Eng
Latest Publications


TOTAL DOCUMENTS

64
(FIVE YEARS 64)

H-INDEX

0
(FIVE YEARS 0)

Published By MDPI AG

2673-4117

Eng ◽  
2022 ◽  
Vol 3 (1) ◽  
pp. 60-77
Author(s):  
Nobutaka Yamanaka ◽  
Shogo Shimazu

Metallic Ni shows high activity for a variety of hydrogenation reactions due to its intrinsically high capability for H2 activation, but it suffers from low chemoselectivity for target products when two or more reactive functional groups are present on one molecule. Modification by other metals changes the geometric and electronic structures of the monometallic Ni catalyst, providing an opportunity to design Ni-based bimetallic catalysts with improved activity, chemoselectivity, and durability. In this review, the hydrogenation properties of these catalysts are described starting from the typical methods of preparing Ni-based bimetallic nanoparticles. In most cases, the reasons for the enhanced catalysis are discussed based on the geometric and electronic effects. This review provides new insights into the development of more efficient and well-structured non-noble metal-based bimetallic catalytic systems for chemoselective hydrogenation reactions.


Eng ◽  
2022 ◽  
Vol 3 (1) ◽  
pp. 42-59
Author(s):  
Michał Łach ◽  
Gabriela Róg ◽  
Karolina Ochman ◽  
Kinga Pławecka ◽  
Agnieszka Bąk ◽  
...  

This paper presents the results of testing the adhesion of geopolymer coatings and varnishes with ceramic additives to concrete and steel substrates. The measurement method used and described in this article was the pull-off method. The pull-off method test provides an easy way to evaluate the degree of adhesion of coatings to metal surfaces. The pull-off device provides values for the peel stress, which not only allows a quick determination of the adhesion of the coating to the substrate, but also makes it easier to compare the adhesion of several coatings to each other. However, this method requires appropriate preparation, so an attempt was made to determine its suitability for geopolymer layers. The results of testing the adhesion of a geopolymer layer to a geopolymer substrate and a concrete substrate are presented. As a result of this study, a higher adhesion strength of the geopolymer layer to the geopolymer substrate was found in comparison to geopolymer coatings applied on conventional concrete. Adhesion tests were also conducted for steel substrates to which both geopolymer and acrylic lacquer were applied.


Eng ◽  
2022 ◽  
Vol 3 (1) ◽  
pp. 27-41
Author(s):  
Michael V. Vesnik

The paper formulates the foundations of a recently developed approach, named the method of fundamental components, intended for constructing heuristic solutions in problems of electromagnetic diffraction, for the first time. The difference between the new method and the known heuristic approaches lies in the application of an adjustment procedure that increases the accuracy. The possibility of the mentioned method for obtaining new results is illustrated with the help of the author’s previously published works. The advantages of the new method in constructing high-speed solvers and in the physical interpretation of numerical solutions are shown.


Eng ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 24-26
Author(s):  
Antonio Gil

Waste management and its recovery to provide it with added value are increasingly important lines of research that fall within the concept of a Circular Economy [...]


Eng ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 9-23
Author(s):  
Riccardo Sala ◽  
Stefano Regondi ◽  
Raffaele Pugliese

Material extrusion additive manufacturing (MEAM) is an advanced manufacturing method that produces parts via layer-wise addition of material. The potential of MEAM to prototype lattice structures is remarkable, but restrictions imposed by manufacturing processes lead to practical limits on the form and dimension of structures that can be produced. For this reason, such structures are mainly manufactured by selective laser melting. Here, the capabilities of fused filament fabrication (FFF) to produce custom-made lattice structures are explored by combining the 3D printing process, including computer-aided design (CAD), with the finite element method (FEM). First, we generated four types of 3D CAD scaffold models with different geometries (reticular, triangular, hexagonal, and wavy microstructures) and tunable unit cell sizes (1–5 mm), and then, we printed them using two nozzle diameters (i.e., 0.4 and 0.8 mm) in order to assess the printability limitation. The mechanical behavior of the above-mentioned lattice scaffolds was studied using FEM, combining compressive modulus (linear and nonlinear) and shear modulus. Using this approach, it was possible to print functional 3D polymer lattice structures with some discrepancies between nozzle diameters, which allowed us to elucidate critical parameters of printing in order to obtain printed that lattices (1) fully comply with FFF guidelines, (2) are capable of bearing different compressive loads, (3) possess tunable porosity, and (3) overcome surface quality and accuracy issues. In addition, these findings allowed us to develop 3D printed wrist brace orthosis made up of lattice structures, minimally invasive (4 mm of thick), lightweight (<20 g), and breathable (porosity >80%), to be used for the rehabilitation of patients with neuromuscular disease, rheumatoid arthritis, and beyond. Altogether, our findings addressed multiple challenges associated with the development of polymeric lattice scaffolds with FFF, offering a new tool for designing specific devices with tunable mechanical behavior and porosity.


Eng ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 1-8
Author(s):  
Fawaz Alharbi ◽  
Ahmed Almoshaigeh ◽  
Meshal Almoshaogeh ◽  
Ahmed Elragi ◽  
Sherif Elkholy

Pavement structures cover vast areas of urban cities and non-urban roads and play a key role in daily commuting functionality and economic development; therefore, they must be conserved against any distress. The rutting problem, being a major distress to the pavement structure, must be solved and dealt with in order to preserve its value. One way of solving this dilemma is by using geo-grids within the pavement structure. A geo-grid is a synthetic material usually made from polymers with different thicknesses and stiffnesses. This paper investigates the effects of geo-grids on reducing the rutting occurrence through adding a layer of geo-grid with certain properties at different levels of the pavement structure. We also investigate, the result of the added geo-grid material to the developed vertical stresses within the pavement cross-section. This investigation is conducted by constructing a 3-D finite elements-based (FE) model of a pavement cross-section using ANSYS software; student version R1 2021. The FE-based model is validated by comparing its numerical predictions with the experimental results acquired from an accelerated large-scale paved model. The results show that the deeper the geo-grid is positioned, the more significant the rutting resistance is observed due to the stiffness of the geo-grid bearing the tensile force until a certain depth. Moreover, noticeable stress reduction is seen in the developed vertical compressive stresses below the loading area resisted by the geo-grid.


Eng ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 643-660
Author(s):  
Pavlos Nikolaidis ◽  
Andreas Poullikkas

The variability and uncertainty caused by the increased penetrations of renewable energy sources must be properly considered in day-ahead unit commitment, optimal power flow, and even real-time economic dispatch problems. Besides achieving minimum cost, modern generation schedules must satisfy a larger set of different complex constraints. These account for the generation constraints in the presence of renewable generation, network constraints affected by the distributed energy resources, bilateral contracts enclosing independent capacity provision, ancillary power auctions, net-metering and feed-in-tariff prosumers, and corrective security actions in sudden load variations or outage circumstances. In this work, a new method is presented to appropriately enhance the integration of distributed energy resources in low-inertia power grids. Based on optimal unit commitment schedules derived from priority-based dynamic programming, the potential of increasing the renewable capacity was examined, performing simulations for different scenarios. To ameliorate the expensive requirement of computational complexity, this approach aimed at eliminating the increased exploration-exploitation efforts. On the contrary, its promising solution relies on the evolutionary commitment of the next optimum configuration based on priority-list schemes to accommodate the intermittent generation progressively. This is achieved via the collection of mappings that transform many-valued clausal forms into satisfiability equivalent Boolean expressions.


Eng ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 632-642
Author(s):  
Prasenjit Podder ◽  
Zongliang Zhang ◽  
Rick Q. Honaker ◽  
Michael L. Free ◽  
Prashant K. Sarswat

Iron removal via jarosite precipitate formation is a commonly used technique in various hydrometallurgical processes. Excess iron removal often becomes essential to an overall metal recovery circuit. This is particularly important to processes involving iron-bearing minerals. A technique, which involved the use of pyrite to generate acid for leaching, for iron removal is critical to enabling the process. Iron removal using CaO or similar reagents is expensive and often results in lost product. In the present study, various compounds that facilitate jarosite formation, namely Na2SO4, NH4OH, KCl, and KOH, were utilized and their effect in precipitation was observed. Visual Minteq assisted simulations were run in order to evaluate favorable conditions for iron removal. Morphology and elemental composition of precipitates were analyzed using scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy, and the phase purity was identified using X-ray diffraction analysis.


Eng ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 620-631
Author(s):  
Peng Lu ◽  
Can Yang ◽  
Yifei Li ◽  
Bo Li ◽  
Zhengsheng Han

The fin field-effect transistor (FinFET) has been the mainstream technology on the VLSI platform since the 22 nm node. The silicon-on-insulator (SOI) FinFET, featuring low power consumption, superior computational power and high single-event effect (SEE) resistance, shows advantages in integrated circuits for space applications. In this work, a rad-hard design methodology for SOI FinFETs is shown to improve the devices’ tolerance against the Total Ionizing Dose (TID) effect. Since the fin height direction enables a new dimension for design optimization, a 3D Source/Drain (S/D) design combined with a gate dielectric de-footing technique, which has been readily developed for the 14 nm node FinFETs, is proposed as an effective method for SOI FinFETs’ TID hardening. More importantly, the governing mechanism is thoroughly investigated using fully calibrated technology computer-aided design (TCAD) simulations to guide design optimizations. The analysis demonstrates that the 3D rad-hard design can modulate the leakage path in 14 nm node n-type SOI FinFETs, effectively suppress the transistors’ sensitivity to the TID charge and reduce the threshold voltage shift by >2×. Furthermore, the rad-hard design can reduce the electric field in the BOX region and lower its charge capture rate under radiation, further improving the transistor’s robustness.


Eng ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 608-619
Author(s):  
David Mc Gaw ◽  
Rosemarie Skeene

Turmeric (Curcuma longa L.) is a spice plant grown in the tropics that contains both an essential oil and an oleoresin. The essential oil is important as a flavouring and has pharmaceutical properties, while the oleoresin is bright yellow in colour and has medicinal properties. The essential oil has traditionally been extracted by hydrodistillation/steam distillation with the total extract being extracted by solvent extraction and more recently by supercritical fluid extraction (SFE). The objective of the work described in this paper was to investigate the possibility of extracting the essential oil using sub-critical fluid extraction and to compare it with hydrodistillation. The experiments using hydrodistillation showed that unpeeled fresh turmeric was the preferred raw material, giving an oil yield of ≈6% dry weight basis, which is similar to that reported in the literature. The experimental programme on the extraction of the oil from dried unpeeled turmeric was carried out over a temperature range from 25 to 30 °C and pressures from 65 to 71 bar. Yields were generally higher than hydrodistillation (up to ≈9% dry weight basis) as were the compositions of the extracted oils. The preferred operating conditions were determined to be 25 °C temperature and 65 bar pressure. Curcumin, the major component of the oleoresin, was not found in the oil, thereby demonstrating that the sub-critical extract is a pure essential oil. It is suggested that consideration be given to evaluating an SFE process whereby the essential oil is initially fully extracted under sub-critical fluid extraction conditions, after which the oleoresin is extracted separately by raising the pressure to ≈250 bar.


Sign in / Sign up

Export Citation Format

Share Document