kuroshio large meander
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 0)

H-INDEX

14
(FIVE YEARS 0)

2020 ◽  
Vol 33 (24) ◽  
pp. 10813-10828
Author(s):  
Bo Qiu ◽  
Shuiming Chen ◽  
Niklas Schneider ◽  
Eitarou Oka ◽  
Shusaku Sugimoto

AbstractDecadal modulations of the Kuroshio Extension (KE) system between a stable and an unstable dynamic state in the western North Pacific have prevailed in the past three decades. This dominance of decadal variations is controlled by the negative feedback loop involving the wind-forced KE variability and its feedback onto the overlying extratropical storm tracks and the basin-scale surface wind field. The wind-forced decadal KE modulations were disrupted in August 2017 due to the development of the Kuroshio large meander south of Japan. By forcing the inflow KE paths northward and by avoiding overriding the shallow Izu Ridge, the Kuroshio large meander was able to compel the KE to change rapidly from the wind-forced, pre-existing, unstable state to a stable state. Following the large meander occurrence in late 2017, the stabilized KE change is found to affect the overlying storm tracks and the basin-scale wind field the same way as those generated by the wind-forced KE change prior to 2017. Given the consistent atmospheric response to both the large-meander-induced and wind-forced KE variability, we expect that the KE dynamic state will resume its decadal modulation after the phase reset relating to the 2017 large meander event.



2019 ◽  
Vol 76 (2) ◽  
pp. 141-154 ◽  
Author(s):  
Shusaku Sugimoto ◽  
Bo Qiu ◽  
Atsushi Kojima


PLoS ONE ◽  
2019 ◽  
Vol 14 (9) ◽  
pp. e0223262
Author(s):  
Yu-Lin K. Chang ◽  
Yasumasa Miyazawa ◽  
Michael J. Miller ◽  
Katsumi Tsukamoto


2019 ◽  
Vol 49 (8) ◽  
pp. 2095-2113 ◽  
Author(s):  
Yang Yang ◽  
X. San Liang

AbstractThe internal dynamical processes underlying the Kuroshio large meander are investigated using a recently developed analysis tool, multiscale window transform (MWT), and the MWT-based canonical transfer theory. Oceanic fields are reconstructed on a low-frequency mean flow window, a mesoscale eddy window, and a high-frequency synoptic window with reference to the three typical path states south of Japan, that is, the typical large meander (tLM), nearshore non-large meander (nNLM), and offshore non-large meander (oNLM) path states. The interactions between the scale windows are quantitatively evaluated in terms of canonical transfer, which bears a Lie bracket form and conserves energy in the space of scale. In general, baroclinic (barotropic) instability is strengthened (weakened) during the tLM state. For the first time we found a spatially coherent inverse cascade of kinetic energy (KE) from the synoptic eddies to the slowly varying mean flow; it occupies the whole large meander region but exists only in the tLM state. By the time-varying multiscale energetics, a typical large meander is preceded by a strong influx of mesoscale eddy energy from upstream with a cyclonic eddy, which subsequently triggers a strong inverse KE cascade from the mesoscale window to the mean flow window to build up the KE reservoir for the meander. Synoptic frontal eddies are episodically intensified due to the baroclinic instability of the meander, but they immediately feed back to the mean flow window through inverse KE cascade. These results highlight the important role played by inverse KE cascades in generating and maintaining the Kuroshio large meander.



2018 ◽  
Vol 48 (8) ◽  
pp. 1771-1786 ◽  
Author(s):  
Xia Liu ◽  
Mu Mu ◽  
Qiang Wang

AbstractBased on the Regional Ocean Modeling System (ROMS) and the conditional nonlinear optimal perturbation (CNOP) method, we explore the nonlinear optimal triggering perturbation of the Kuroshio large meander (LM) and its evolution, and reveal the role of nonlinear physical processes in the formation of the LM path. The results show that the large amplitudes of the perturbations are mainly located in the upper 2000 m in the southeastern area of Kyushu (29°–32°N, 131°–134°E), where the eastward propagation of the cold anomaly is vital to the formation of the LM path. By analyzing the depth-integrated vorticity equation of the perturbation, we find that linear advection, namely, the interaction between the perturbation and the reference field, tends to move the cyclonic eddy induced by the optimal triggering perturbation eastward, while the nonlinear advection associated with the interaction of perturbations tends to move the cyclonic eddy westward. The opposing effects of the nonlinear advection and the linear advection slow the eastward movement of the cyclonic eddy so that the eddy has a chance to effectively develop, eventually leading to the formation of the Kuroshio LM path.



2015 ◽  
Vol 2 (2) ◽  
pp. 226-236 ◽  
Author(s):  
Mu Mu ◽  
Wansuo Duan ◽  
Dake Chen ◽  
Weidong Yu

Abstract In this paper, we emphasize the importance of accurate initial conditions in predicting high-impact ocean-atmospheric environmental events, such as El Niño-Southern Oscillation (ENSO), Indian Ocean Dipole (IOD), tropical cyclone (TC), and Kuroshio large meander (KLM), by reviewing recent progresses toward target observations for improving the initialization of these events forecasting. Since field observations are costly and will never be dense enough to fully cover the vast space of these events, it is necessary to develop methodologies that guide the design of efficient and effective observation strategy. Of particular interest is a method called conditional non-linear optimal perturbation (CNOP), which has been shown to be very useful in determining the sensitive areas for target observations applicable to the predictions of ENSO, IOD, TC, and KLM. Further studies are needed to understand the predictability of these events under the influence of climate change, and to explore the possibility of implementing field programs of target observations. These studies are challenging but are crucially important for improving our forecast skill of the high-impact ocean-atmospheric environmental events, and thus for disaster prevention, climate change mitigation, and sustainable socio-economic development.



2015 ◽  
Vol 93 (2) ◽  
pp. 161-179 ◽  
Author(s):  
Kazuyo MURAZAKI ◽  
Hiroyuki TSUJINO ◽  
Tatsuo MOTOI ◽  
Kazuo KURIHARA




Sign in / Sign up

Export Citation Format

Share Document