cultured epithelial cells
Recently Published Documents


TOTAL DOCUMENTS

213
(FIVE YEARS 7)

H-INDEX

43
(FIVE YEARS 1)

Author(s):  
Rocío García ◽  
Camila Falduti ◽  
Raquel Jara ◽  
Mariángeles Clauzure ◽  
María M. Massip-Copiz ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yoshiyuki Kasai ◽  
Tsunetaro Morino ◽  
Eri Mori ◽  
Kazuhisa Yamamoto ◽  
Hiromi Kojima

Abstract The proliferation and differentiation of cultured epithelial cells may be modified by Rho-associated kinase (ROCK) inhibition and extracellular Ca2+ concentration. However, it was not known whether a combination would influence the behavior of cultured epithelial cells through changes in the phosphorylation of non-muscle myosin light chain II (MLC). Here we show that the combination of ROCK inhibition with Ca2+ elevation regulated the phosphorylation of MLC and improved both cell expansion and cell–cell adhesion during the culture of human nasal mucosal epithelial cell sheets. During explant culture, Ca2+ enhanced the adhesion of nasal mucosal tissue, while ROCK inhibition downregulated MLC phosphorylation and promoted cell proliferation. During cell sheet culture, an elevation of extracellular Ca2+ promoted MLC phosphorylation and formation of cell–cell junctions, allowing the harvesting of cell sheets without collapse. Moreover, an in vitro grafting assay revealed that ROCK inhibition increased the expansion of cell sheets three-fold (an effect maintained when Ca2+ was also elevated), implying better wound healing potential. We suggest that combining ROCK inhibition with elevation of Ca2+ could facilitate the fabrication of many types of cell graft.


2020 ◽  
pp. 194589242096416
Author(s):  
Kijeong Lee ◽  
Junhyoung Byun ◽  
Byoungjae Kim ◽  
Jiwoo Yeon ◽  
Junhu Tai ◽  
...  

Background Epithelial barrier disruption is a crucial feature of allergic rhinitis (AR). Previous reports have indicated the role of transient receptor potential vanilloid (TRPV) 4 in regulating the intercellular junctions in various cells. However, the role of TRPV4 and its regulation by T helper 2 cell cytokines in the epithelial cells of patients with AR remains unclear. Objective We aimed to elucidate the expression of TRPV4 in nasal epithelial cells and its cytokine-induced regulation, and to reveal its role in house dust mite-induced junction disruption in AR. Methods The expression of TRPV4 in nasal epithelial cells was measured using real-time polymerase chain reaction, western blot, and immunohistochemical assays, and the expression levels were compared between the patients with AR and healthy controls. Altered expression of TRPV4 was induced in cultured nasal epithelial cells by stimulation of interleukin (IL) 4, IL-13, and tumor necrosis factor alpha. In addition, expression of E-cadherin and zonula occludens 1 was induced in Der p 1-stimulated epithelial cells by treatment with either a TRPV4 agonist (GSK1016790A) or a TRPV4 antagonist (RN1734). Results TRPV4 expression was increased in epithelial cells harvested from the affected turbinates compared to those from the normal turbinates. The stimulation of cultured epithelial cells with IL-4 and IL-13 resulted in TRPV4 upregulation. Additionally, E-cadherin and zonula occludens 1 expression levels decreased in the cultured epithelial cells treated with GSK1016790A after stimulation with Der p 1, whereas Der p 1 stimulation alone showed no effect on junctional protein expression. Conclusions Increased TRPV4 expression occurred in epithelial cells harvested from patients with AR and epithelial cells stimulated by Th2 cytokines. Decreased junctional protein expression in epithelial cells after the stimulation by house dust mite allergen with TRPV4 agonist indicates a possible role of TRPV4 in the pathogenesis of allergen-induced epithelial barrier disruption in AR.


2020 ◽  
Vol 295 (13) ◽  
pp. 4289-4302 ◽  
Author(s):  
Yukako Oda ◽  
Taichi Sugawara ◽  
Yuko Fukata ◽  
Yasushi Izumi ◽  
Tetsuhisa Otani ◽  
...  

Tricellular tight junctions (tTJs) create paracellular barriers at tricellular contacts (TCs), where the vertices of three polygonal epithelial cells meet. tTJs are marked by the enrichment of two types of membrane proteins, tricellulin and angulin family proteins. However, how TC geometry is recognized for tTJ formation remains unknown. In the present study, we examined the molecular mechanism for the assembly of angulin-1 at the TCs. We found that clusters of cysteine residues in the juxtamembrane region within the cytoplasmic domain of angulin-1 are highly palmitoylated. Mutagenesis analyses of the cysteine residues in this region revealed that palmitoylation is essential for localization of angulin-1 at TCs. Consistently, suppression of Asp-His-His-Cys motif–containing palmitoyltransferases expressed in EpH4 cells significantly impaired the TC localization of angulin-1. Cholesterol depletion from the plasma membrane of cultured epithelial cells hampered the localization of angulin-1 at TCs, suggesting the existence of a lipid membrane microdomain at TCs that attracts highly palmitoylated angulin-1. Furthermore, the extracellular domain of angulin-1 was also required for its TC localization, irrespective of the intracellular palmitoylation. Taken together, our findings suggest that both angulin-1's extracellular domain and palmitoylation of its cytoplasmic region are required for its assembly at TCs.


2019 ◽  
Vol 76 (8) ◽  
pp. 1579-1593 ◽  
Author(s):  
Ángel G. Valdivieso ◽  
Mariángeles Clauzure ◽  
María M. Massip-Copiz ◽  
Carla E. Cancio ◽  
Cristian J. A. Asensio ◽  
...  

2017 ◽  
Vol 28 (6) ◽  
pp. 1462-1467 ◽  
Author(s):  
Ke-Jia Wu ◽  
Lu-Yan Tang ◽  
Jian Li ◽  
Shu-Jun Chen ◽  
Jin-Ran Lin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document