Organics
Latest Publications


TOTAL DOCUMENTS

28
(FIVE YEARS 28)

H-INDEX

0
(FIVE YEARS 0)

Published By MDPI AG

2673-401x

Organics ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 415-423
Author(s):  
Dawod Yousif ◽  
Silvia Tombolato ◽  
Elmehdi Ould Maina ◽  
Riccardo Po ◽  
Paolo Biagini ◽  
...  

The Suzuki–Miyaura cross-coupling reaction plays a fundamental role in modern synthetic organic chemistry, both in academia and industry. For this reason, scientists continue to search for new, more effective, cheaper and environmentally friendly procedures. Recently, micellar synthetic chemistry has been demonstrated to be an excellent strategy for achieving chemical transformations in a more efficient way, thanks to the creation of nanoreactors in aqueous environments using selected surfactants. In particular, the cheap and commercially available surfactant Kolliphor EL (a polyethoxylated castor oil derivative) has been used with success to achieve metal-catalyzed transformations in water with high yields and short reaction times, with the advantage of using air-sensitive catalysts without the need for inert atmosphere. In this work, the Kolliphor EL methodology was applied to the Suzuki cross-coupling reaction between thiophene and aniline, using the highly effective catalyst Pd(dtbpf)Cl2. The cross-coupling products were achieved at up to 98% yield, with reaction times of up to only 15 min, working at room temperature and without the need for inert atmosphere.


Organics ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 404-414
Author(s):  
Tomas Opsomer ◽  
Kaat Valkeneers ◽  
Ana Ratković ◽  
Wim Dehaen

1,2,3-Triazole-4-carbaldehydes are useful synthetic intermediates which may play an important role in the discovery of novel applications of the 1,2,3-triazole moiety. In this work, a one-step multigram scale synthesis of 4-formyl-1-(4-nitrophenyl)-1H-1,2,3-triazole (FNPT) as a preferred reagent for the synthesis of 1-alkyl-4-formyltriazoles is described, making use of the commercially available 3-dimethylaminoacrolein and 4-nitrophenyl azide. Next, the earlier reported reaction of FNPT with alkylamines is further explored, and for hexylamine, the one-pot sequential cycloaddition and Cornforth rearrangement is demonstrated. In addition, a useful protocol for the in situ diazotization of 4-nitroaniline is provided. This facilitated the complete hydrolysis of rearranged 4-iminomethyl-1,2,3-triazoles and allowed for the recycling of 4-nitrophenyl azide.


Organics ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 395-403
Author(s):  
Toshiaki Murai ◽  
Ryota Wada ◽  
Kouji Iwata ◽  
Yuuki Maekawa ◽  
Kazuma Kuwabara ◽  
...  

Organophosphorus compounds with stereogenic phosphorus and carbon atoms have received increasing attention. In this regards, primary phosphines with a stereogenic carbon atom adjacent to the phosphorus atom were synthesized by the reduction in phosphonates and phosphonoselenoates with a binaphthyl group. Their oxidized products, i.e., phosphine oxides with a stereogenic tetrasubstituted carbon atom, were found to undergo BEt3-mediated radical addition to cyclohexene to give P-stereogenic secondary phosphine oxides with a diastereoselectivity of 91:9. The products were characterized by ordinary analytical methods, such as Fourier transform infrared spectroscopy; 1H, 13C, and 31P NMR spectroscopies; and mass spectroscopy. Computational studies on the phosphorus-centered radical species and the obtained product implied that the thermodynamically stable radical and the adduct may be formed as a major diastereomer. The radical addition to a range of alkenes took place in an anti-Markovnikov fashion to give P-stereogenic secondary phosphine oxides. A variety of functional groups in the alkenes were tolerated under the reaction conditions to afford secondary phosphine oxides in moderate yields. Primary phosphines with an alkenyl group, which were generated in situ, underwent intramolecular cyclization to give five- and six-membered cyclic phosphines in high yields after protection by BH3.


Organics ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 388-394
Author(s):  
Hamidou Keita

Herein, the synthesis of a novel adamantanyl-functionalized phthalimide scaffold is demonstrated. The novel compound could be used as a precursor for various synthetic pathways owing to the generic use of adamantane substituents as the driving force for supramolecular interactions with macrocycles and N-substituted phthalimide derivatives as a core structure in numerous drugs. The adamantanyl-functionalized phthalimide scaffold contains bromide groups on the C4 and C5 positions of the benzene ring, effectively allowing further facile modifications of the scaffold. The structure was fully characterized including single-crystal X-ray crystallography. The crystal structure shows an adamantane moiety at an angle of 115.57(7)° to the phthalimide core, hence sterically freeing the adamantane unit for host–guest interactions.


Organics ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 365-375
Author(s):  
Julien Massue ◽  
Denis Jacquemin ◽  
Gilles Ulrich

Multifunctional stimuli-responsive fluorophores showing bright environment-sensitive emissions have fueled intense research due to their innovative applications in the fields of biotechnologies, optoelectronics, and materials. A strong structural diversity is observed among molecular materials, which has been enriched over the years with a growing responsiveness to stimuli. Boron dipyrromethene (BODIPY) dyes have long been the flagship of emissive boron complexes due to their outstanding properties until a decade ago when analogues based on N^O, N^N, or N^C π-conjugated chelates emerged. The finality of developing borate dyes was to compensate for BODIPYs’ lack of solid-state fluorescence and small Stokes shifts while keeping their excellent optical properties in solution. Among them, the borate complexes based on a salicylaldimine ligand, called by the acronym boranils appear as the most promising, owing to their facile synthesis and dual-state emission properties. Boranil dyes have proven to be good alternatives to BODIPY dyes and have been applied in applications such as bioimaging, bioconjugation, and detection of biosubstrates. Meanwhile, ab initio calculations have rationalized experimental results and provided insightful feedback for future designs. This review article aims at providing a concise yet representative overview of the chemistry around the boranil core with the subsequent applications.


Organics ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 348-364
Author(s):  
Olesya V. Khoroshilova ◽  
Aleksander V. Vasilyev

This review describes methods for the synthesis of 1-trifluomethylindanes and close structures, which are still quite rare and scarcely available compounds. There are two main approaches to obtain 1-CF3-indanes. The first one is the construction of an indane system from CF3 precursors; the main methods are acid-mediated Friedel–Crafts cyclization, transition metal-catalyzed [3+2] annulation, and free-radical transformations. The second approach is the trifluoromethylation of a ready-made indane core by various CF3 sources, such as Ruppert–Prakash or Togni reagents. Many of these synthetic procedures possess high regio- and stereo-selectivity, allowing the preparation of unique 1-CF3-indane structures. In recent years, great attention has been paid to the synthesis of 1-CF3-indanes, due to the discovery of important biologically active properties for these compounds.


Organics ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 337-347
Author(s):  
Carolina Durand ◽  
Michal Szostak

Piperazine ranks as the third most common nitrogen heterocycle in drug discovery, and it is the key component of several blockbuster drugs, such as Imatinib (also marketed as Gleevec) or Sildenafil, sold as Viagra. Despite its wide use in medicinal chemistry, the structural diversity of piperazines is limited, with about 80% of piperazine-containing drugs containing substituents only at the nitrogen positions. Recently, major advances have been made in the C–H functionalization of the carbon atoms of the piperazine ring. Herein, we present an overview of the recent synthetic methods to afford functionalized piperazines with a focus on C–H functionalization.


Organics ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 313-336
Author(s):  
Nikolai V. Rostovskii ◽  
Mikhail S. Novikov ◽  
Alexander F. Khlebnikov

Conjugated azapolyenes (azabuta-1,3-dienes, aza-/diaza-/oxaza-/oxadiazahexa-1,3,5-trienes) are highly reactive in electrocyclization reactions, which makes them convenient precursors for the synthesis of a wide range of four-, five-, and six-membered nitrogen heterocycles that are of relevance for medicinal chemistry. Ring opening reactions of 2H-azirines and azoles containing an N–N or N–O bond, initiated by a transition metal carbene, have become increasingly important in recent years, since they easily allow the generation of azapolyenes with different numbers of double bonds and heteroatoms in various positions. This review summarizes the literature, published mainly in the last decade, on the synthetic and mechanistic aspects of electrocyclizations of azapolyenes generated by the carbene method.


Organics ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 306-312
Author(s):  
Takahiro Suzuki ◽  
Riko Nagahama ◽  
Muhammad Aiman Fariz ◽  
Yuki Yukutake ◽  
Kazutada Ikeuchi ◽  
...  

Illisimonin A is a new sesquiterpene isolated from Illicium simonsii, and it possesses a novel 5/5/5/5/5 pentacyclic skeleton. The tricyclic skeleton of illisimonin A, tricyclo[5.2.1.01,5]decane, is presumed to be biosynthesized from allo-cedranes via a skeletal rearrangement. Herein, we report the concise synthesis of highly oxidized allo-cedranes by an intramolecular Diels–Alder reaction using ortho-benzoquinones and demonstrate the biomimetic transformation of allo-cedranes by a retro-Claisen/aldol pathway.


Organics ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 287-305
Author(s):  
Matthieu Pélingre ◽  
Dindet Steve-Evanes Koffi Teki ◽  
Jamal El-Abid ◽  
Vincent Chagnault ◽  
José Kovensky ◽  
...  

Many preparations of maltooligosaccharides have been described in literature, essentially using enzymatic or biotechnological processes. These compounds, derived from starch, are well-known as prebiotic agents. The use of maltohexa-, hepta-, and octaoses as synthons in organic synthesis was also well documented in literature. They can indeed be obtained as single compounds by the cyclodextrins’ ring-opening. This reaction has been studied for many years, varying the protecting and functional groups and the reaction conditions, leading to functionalized oligomaltoses. These compounds are of wide interest in various fields. They have a strong potential as scaffolds for multivalence in chemobiology, as building blocks for the production of biomimetic pseudo-glycopeptides, as well as monomers for the preparation of materials. In view of the importance of these oligomaltoses, this review focuses on the different methodologies allowing access to them via chemical and enzymatic ring-opening of cyclodextrins.


Sign in / Sign up

Export Citation Format

Share Document