polygon decomposition
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 3)

H-INDEX

9
(FIVE YEARS 0)

2021 ◽  
Vol 7 (4) ◽  
pp. 1-37
Author(s):  
Serafino Cicerone ◽  
Mattia D’emidio ◽  
Daniele Frigioni ◽  
Filippo Tirabassi Pascucci

The cavity decomposition problem is a computational geometry problem, arising in the context of modern electronic CAD systems, that concerns detecting the generation and propagation of electromagnetic noise into multi-layer printed circuit boards. Algorithmically speaking, the problem can be formulated so as to contain, as sub-problems, the well-known polygon schematization and polygon decomposition problems. Given a polygon P and a finite set C of given directions, polygon schematization asks for computing a C -oriented polygon P ′ with “low complexity” and “high resemblance” to P , whereas polygon decomposition asks for partitioning P into a set of basic polygonal elements (e.g., triangles) whose size is as small as possible. In this article, we present three different solutions for the cavity decomposition problem, which are obtained by suitably combining existing algorithms for polygon schematization and decomposition, by considering different input parameters, and by addressing both methodological and implementation issues. Since it is difficult to compare the three solutions on a theoretical basis, we present an extensive experimental study, employing both real-world and random data, conducted to assess their performance. We rank the proposed solutions according to the results of the experimental evaluation, and provide insights on natural candidates to be adopted, in practice, as modules of modern printed circuit board design software tools, depending on the observed performance and on the different constraints on the desired output.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Georgy Skorobogatov ◽  
Cristina Barrado ◽  
Esther Salami

Sensors ◽  
2018 ◽  
Vol 18 (7) ◽  
pp. 2132 ◽  
Author(s):  
Matthew Coombes ◽  
Tom Fletcher ◽  
Wen-Hua Chen ◽  
Cunjia Liu

2012 ◽  
Vol 22 (02) ◽  
pp. 103-141 ◽  
Author(s):  
ANDRZEJ LINGAS ◽  
AGNIESZKA WASYLEWICZ ◽  
PAWEŁ ŻYLIŃSKI

The complexity status of the minimum r-star cover problem for orthogonal polygons had been open for many years, until 2004 when Ch. Worman and J. M. Keil proved it to be polynomially tractable (Polygon decomposition and the orthogonal art gallery problem, IJCGA 17(2) (2007), 105-138). However, since their algorithm has Õ(n17)-time complexity, where Õ(·) hides a polylogarithmic factor, and thus it is not practical, in this paper we present a linear-time 3-approximation algorithm. Our approach is based upon the novel partition of an orthogonal polygon into so-called o-star-shaped orthogonal polygons.


Annals of GIS ◽  
2010 ◽  
Vol 16 (4) ◽  
pp. 223-236
Author(s):  
Mark W. Horner ◽  
Irene Casas ◽  
Joni A. Downs

2010 ◽  
Vol 411 (14-15) ◽  
pp. 1648-1667 ◽  
Author(s):  
D. Adjiashvili ◽  
D. Peleg

2007 ◽  
Vol 17 (02) ◽  
pp. 105-138 ◽  
Author(s):  
CHRIS WORMAN ◽  
J. MARK KEIL

A decomposition of a polygon P is a set of polygons whose geometric union is exactly P. We study a polygon decomposition problem that is equivalent to the Orthogonal Art Gallery problem. Two points are r-visible if the orthogonal bounding rectangle for p and q lies within P. A polygon P is an r-star if there exists a point k ∈ P such that for each point q ∈ P, q is r-visible from k. In this problem we seek a minimum cardinality decomposition of a polygon into r-stars. We show how to compute the minimum r-star cover of an orthogonal polygon in polynomial time.


Sign in / Sign up

Export Citation Format

Share Document