cutting resistance
Recently Published Documents


TOTAL DOCUMENTS

148
(FIVE YEARS 37)

H-INDEX

8
(FIVE YEARS 1)

2022 ◽  
Vol 16 (1) ◽  
pp. 87-94
Author(s):  
Shinichi Ninomiya ◽  
Satoshi Nagakura ◽  
Fumio Koga ◽  
Yoji Yamada ◽  
Manabu Iwai ◽  
...  

We propose ultrasonic rotary cutting, in which ultrasonic vibrations are imparted to a rotating cemented carbide cylindrical tool to cut hardened steel to reduce the cutting resistance and improve the properties of the machined surface, and investigate the machining characteristics. Machining experiments were conducted under dry and wet conditions to verify the effects of the ultrasonic vibrations. The surface produced via ultrasonic rotary cutting was intermittently machined, which is characteristic of ultrasonic cutting. In dry machining, the cutting resistance was reduced by approximately 20%, and the surface roughness of the machined surface was reduced by approximately 30% when the cutting speed was below the critical speed. We also demonstrated that the surface roughness was improved by ultrasonic vibrations when the cutting speed was equal to or above the critical speed. A similar tendency was observed in wet machining with longer cutting lengths. We then applied ultrasonic rotary cutting to machine a straight R groove in hardened steel and showed that the cutting resistance was reduced, and the tool engagement was improved.


Author(s):  
Ferenc Tolvaly-Rosca ◽  
Judit Pásztor ◽  
Zoltán Forgó

Abstract The actual energy situation and the significant energy demand of agricultural production require the exploration and analysis of the general laws of the main processes in the field of energy, which is part of the borderline between the technical sciences and the agricultural sciences. Tillage machines change the physical properties of the soil, but at the same time the mechanical properties of the soil react to the implement. One of the basic works of seedbed preparation is harrowing. In this work we study the kinematics and dynamics of the active rotary harrow implements, taking into account the cutting resistance of the soil. The results obtained with the developed modeling methods, give reliable approximations to the experienced tilling processes.


2021 ◽  
Vol 221 (1) ◽  
pp. 20-32
Author(s):  
Mengmeng Wang ◽  
Jinhao Liu ◽  
Dian Wang ◽  
Jian Wu

Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 564
Author(s):  
Vladimir Čebašek ◽  
Veljko Rupar ◽  
Stevan Đenadić ◽  
Filip Miletić

The bucket-wheel dredge “Kovin I” for underwater coal mining with bucket-wheel type UCW-450 has been in operation for over 20 years. Based on analyzing the bucket-wheel dredger performance, productivity, maintenance costs, and reliability, a rational decision was made: to rehabilitate the most essential parts of the dredge, including the bucket wheel and the gearbox. However, the selection and construction of the excavator parts were performed on the ground of available laboratory data for digging resistance. The data itself was determined by the testing methodology that did not include the influence of surrounding water pressure at a certain depth of mining. According to the previous findings, it was necessary to develop a specific research and testing program that would involve appropriate laboratory testing of the geomechanical parameters. These were to represent the influence of hydrostatic water pressure on the working environment—coal. Nevertheless, geomechanical laboratory research tests were initially modified to provide reliable data of cutting resistance, especially in the water under different hydrostatic pressures, fully simulating the “in situ” working conditions of mining, i.e., cutting.


2021 ◽  
pp. 461-468

In order to simulate straw cutting process, this paper established a maize straw cutting model with discrete element method (DEM) based on straw cutting experiment. Firstly, maize straw model consisting of several small particles was established by DEM. Then, a straw cutting experiment was conducted and the maximum straw cutting resistance was 199 N for straw with 15 mm diameter. Then, single-factor experiment was conducted to analyze the effect of DEM parameters on straw cutting effect and the max straw cutting resistance Fmax. The normal stiffness between particles and blade (ball-facet-kn) and shear stiffness between particles and blade (ball-facet-ks) were found to be the significant factors affecting Fmax, and the value of the parameters that has no significance was determined. The optimum combination of the significant parameters was 17662 N·m-1 of ball-facet-kn and 52499 N·m-1 of ball-facet-ks. The verification test results showed that the maize straw model was cut off, thus it could simulate the real straw cutting effect, and the relative error of max straw cutting resistance Fmax between the simulation and the experiment was below 9.1%. Thus, it could be concluded that the established maize straw cutting model was accurate and reliable.


2021 ◽  
pp. 461-468
Author(s):  
Zhiqi Zheng ◽  
Hongbo Zhao ◽  
Peng Liu ◽  
Jin He

In order to simulate straw cutting process, this paper established a maize straw cutting model with discrete element method (DEM) based on straw cutting experiment. Firstly, maize straw model consisting of several small particles was established by DEM. Then, a straw cutting experiment was conducted and the maximum straw cutting resistance was 199 N for straw with 15 mm diameter. Then, single-factor experiment was conducted to analyze the effect of DEM parameters on straw cutting effect and the max straw cutting resistance Fmax. The normal stiffness between particles and blade (ball-facet-kn) and shear stiffness between particles and blade (ball-facet-ks) were found to be the significant factors affecting Fmax, and the value of the parameters that has no significance was determined. The optimum combination of the significant parameters was 17662 N·m-1 of ball-facet-kn and 52499 N·m-1 of ball-facet-ks. The verification test results showed that the maize straw model was cut off, thus it could simulate the real straw cutting effect, and the relative error of max straw cutting resistance Fmax between the simulation and the experiment was below 9.1%. Thus, it could be concluded that the established maize straw cutting model was accurate and reliable.


BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 3840-3850
Author(s):  
Ken Takeyama ◽  
Hideyuki Yokochi ◽  
Satoru Nishio ◽  
Satoru Tsuchikawa

In recent years, circular saw blades with thinner kerfs have been in high demand for improvement of the production yield of wood-based materials and the reduction of sawdust. In the case of ripping of solid wood, the number of teeth of a circular saw blade is normally set to 40 or 50, with a diameter of 305 mm, which allows less cutting resistance and smooth exhausting of sawdust. However, at certain rotational speeds, self-excited alternate-tooth vibration can easily occur in circular saw blades with such thin kerfs and so few teeth. Therefore, the cutting surface quality tends to be worse. In this study, the mechanism of this self-excited alternate-tooth vibration was clarified. The vibration mode and frequency were predicted by the finite element method. In addition, a circular saw blade with a body thickness 1.5 mm and 50 teeth was employed for wood-cutting experiments. The rotational speed range of the self-excited alternate-tooth vibration modes and their frequencies were investigated. When a double of the tooth passage frequency was slightly higher than the frequencies of the alternate-tooth vibration modes, an alternate-tooth vibration of the regenerative chatter type was excited, owing to the forces on the sides of the tooth.


Sign in / Sign up

Export Citation Format

Share Document