helical vortices
Recently Published Documents


TOTAL DOCUMENTS

75
(FIVE YEARS 12)

H-INDEX

17
(FIVE YEARS 2)

2021 ◽  
Vol 6 (11) ◽  
Author(s):  
A. Castillo-Castellanos ◽  
S. Le Dizès ◽  
E. Durán Venegas

2020 ◽  
Author(s):  
Oscar Velasco Fuentes ◽  
Alejandro Camilo Espinosa Ramirez
Keyword(s):  

2020 ◽  
Vol 5 (11) ◽  
Author(s):  
Alessandro Capone ◽  
Francisco Alves Pereira
Keyword(s):  

Author(s):  
David H. Wood

All rotating blades shed helical vortices which have a significant effect on the velocity over the blades and the forces acting on them. Nevertheless, knowledge of vortex behavior is not used in blade element theory (BET), the most common method to calculate the thrust produced by propellers and the power by wind turbines. Helical vortices of constant pitch and radius are also of fundamental interest as one of only three geometries that do not deform under their “self-induced” motion. This aspect of vortex theory is reviewed historically and the relationship with the forces acting on submerged bodies briefly reviewed. The development of helical vortex theory (HVT) in the 20th century is then described. It is shown that HVT allows BET to be used for a number of important problems that cannot be analyzed by current versions of the theory.


2020 ◽  
Vol 117 (21) ◽  
pp. 11233-11239 ◽  
Author(s):  
Duo Xu ◽  
Atul Varshney ◽  
Xingyu Ma ◽  
Baofang Song ◽  
Michael Riedl ◽  
...  

Pulsating flows through tubular geometries are laminar provided that velocities are moderate. This in particular is also believed to apply to cardiovascular flows where inertial forces are typically too low to sustain turbulence. On the other hand, flow instabilities and fluctuating shear stresses are held responsible for a variety of cardiovascular diseases. Here we report a nonlinear instability mechanism for pulsating pipe flow that gives rise to bursts of turbulence at low flow rates. Geometrical distortions of small, yet finite, amplitude are found to excite a state consisting of helical vortices during flow deceleration. The resulting flow pattern grows rapidly in magnitude, breaks down into turbulence, and eventually returns to laminar when the flow accelerates. This scenario causes shear stress fluctuations and flow reversal during each pulsation cycle. Such unsteady conditions can adversely affect blood vessels and have been shown to promote inflammation and dysfunction of the shear stress-sensitive endothelial cell layer.


2019 ◽  
Vol 878 ◽  
pp. 663-699 ◽  
Author(s):  
Fengjian Jiang ◽  
Bjørnar Pettersen ◽  
Helge I. Andersson

We present a detailed study of the turbulent wake behind a quarter-ring curved cylinder at Reynolds number $Re=3900$ (based on cylinder diameter and incoming flow velocity), by means of direct numerical simulation. The configuration is referred to as a concave curved cylinder with incoming flow aligned with the plane of curvature and towards the inner face of the cylinder. Wake flows behind this configuration are known to be complex, but have so far only been studied at low $Re$. This is the first direct numerical simulation investigation of the turbulent wake behind the concave configuration, from which we reveal new and interesting wake dynamics, and present in-depth physical interpretations. Similar to the low-$Re$ cases, the turbulent wake behind a concave curved cylinder is a multi-regime and multi-frequency flow. However, in addition to the coexisting flow regimes reported at lower $Re$, we observe a new transitional flow regime at $Re=3900$. The flow field in this transitional regime is dominated not by von Kármán-type vortex shedding, but by periodic asymmetric helical vortices. Such vortex pairs exist also in some other wake flows, but are then non-periodic. Inspections reveal that the periodic motion of the asymmetric helical vortices is induced by vortex shedding in its neighbouring oblique shedding regime. The oblique shedding regime is in turn influenced by the transitional regime, resulting in a unified and remarkably low dominating frequency in both flow regimes. Owing to this synchronized frequency, the new wake dynamics in the transitional regime might easily be overlooked. In the near wake, two distinct peaks are observed in the time-averaged axial velocity distribution along the curved cylinder span, while only one peak was observed at lower $Re$. The presence of the additional peak is ascribed to a strong favourable base pressure gradient along the cylinder span. It is noteworthy that the axially directed base flow exceeded the incoming velocity behind a substantial part of the quarter-ring and even persisted upwards along the straight vertical extension. As a by-product of our study, we find that a straight vertical extension of 16 cylinder diameters is required in order to avoid any adverse effects from the upper boundary of the flow domain.


Sign in / Sign up

Export Citation Format

Share Document