Expansions of models and turing degrees

1982 ◽  
Vol 47 (3) ◽  
pp. 587-604 ◽  
Author(s):  
Julia Knight ◽  
Mark Nadel

If is a countable recursively saturated structure and T is a recursively axiomatizable theory that is consistent with Th(), then it is well known that can be expanded to a recursively saturated model of T [7, p. 186]. This is what has made recursively saturated models useful in model theory. Recursive saturation is the weakest notion of saturation for which this expandability result holds. In fact, if is a countable model of Pr = Th(ω, +), then can be expanded to a model of first order Peano arithmetic P just in case is recursively saturated (see [3]).In this paper we investigate two natural sets of Turing degrees that tell a good deal about the expandability of a given structure. If is a recursively saturated structure, I() consists of the degrees of sets that are recursive in complete types realized in . The second set of degrees, D(), consists of the degrees of sets S such that is recursive in S-saturated. In general, I() ⊆ D(). Moreover, I() is obviously an “ideal” of degrees. For countable structures , D() is “closed” in the following sense: For any class C ⊆ 2ω, if C is co-r.e. in S for some set S such that , then there is some σ ∈ C such that . For uncountable structures , we do not know whether D() must be closed.

1982 ◽  
Vol 47 (4) ◽  
pp. 833-840 ◽  
Author(s):  
Julia Knight ◽  
Mark Nadel

A set J of Turing degrees is called an ideal if (1) J ≠ ∅, (2) for any pair of degrees ã, , if ã, ϵ J, then ã ⋃ ϵJ, and (3) for any ⋃ ϵ J and any , if < ⋃, then ϵ J. A set J of degrees is said to be closed if for any theory T with a set of axioms of degree in J, T has a completion of degree in J.Closed ideals of degrees arise naturally in the following way. If is a recursively saturated structure, let I() = { for some ā ϵ }. Let D() = {: is recursive in d-saturated}. (Recursive in d-saturation is defined like recursive saturation except that the sets of formulas considered are recursive in d.) These two sets of degrees were investigated in [2]. It was shown that if is a recursively saturated model of P, Pr = Th(ω, +), or Pr′ = Th(Z, +, 1), then I() = D(), and this set is a closed ideal. Any closed ideal J can be represented as I() = D() for some recursively saturated model of Pr′. For sets J of power at most ℵ1, Pr′ can be replaced by P.Assuming CH, all closed ideals have power at most ℵ1, but if CH fails, there are closed ideals of power greater than ℵ1, and it is not known whether these can be represented as I() = D() for a recursively saturated model of P.In the present paper, it will first be shown that information about representation of closed ideals provides new information about an old problem of MacDowell and Specker [6] and extends an old result of Scott [8] in a natural way. It will also be shown that the representation results from [2] answer a problem of Friedman [1]. This part of the paper is aimed at convincing the reader that representation problems are worth investigating.


1986 ◽  
Vol 51 (1) ◽  
pp. 222-224 ◽  
Author(s):  
Julia F. Knight

The complete diagram of a structure , denoted by Dc(), is the set of all sentences true in the structure (, a)a∈. A structure is said to be resplendent if for every sentence θ involving a new relation symbol R in addition to symbols occurring in Dc(), if θ is consistent with Dc(), then there is a relation P on such that (see[1]).Baldwin asked whether a homogeneous recursively saturated structure is necessarily resplendent. Here it is shown that this need not be the case. It is shown that if is an uncountable homogeneous resplendent model of an unstable theory, then must be saturated. The proof is related to the proof in [5] that an uncountable homogeneous recursively saturated model of first order Peano arithmetic must be saturated. The example for Baldwin's question is an uncountable homogeneous model for a particular unstable theory, such that is recursively saturated and omits some type. (The continuum hypothesis is needed to show the existence of such a model in power ℵ1.)The proof of the main result requires two lemmas.


Author(s):  
Ali Enayat

AbstractA model $${\mathcal {M}}$$ M of ZF is said to be condensable if $$ {\mathcal {M}}\cong {\mathcal {M}}(\alpha )\prec _{\mathbb {L}_{{\mathcal {M}}}} {\mathcal {M}}$$ M ≅ M ( α ) ≺ L M M for some “ordinal” $$\alpha \in \mathrm {Ord}^{{\mathcal {M}}}$$ α ∈ Ord M , where $$\mathcal {M}(\alpha ):=(\mathrm {V}(\alpha ),\in )^{{\mathcal {M}}}$$ M ( α ) : = ( V ( α ) , ∈ ) M and $$\mathbb {L}_{{\mathcal {M}}}$$ L M is the set of formulae of the infinitary logic $$\mathbb {L}_{\infty ,\omega }$$ L ∞ , ω that appear in the well-founded part of $${\mathcal {M}}$$ M . The work of Barwise and Schlipf in the 1970s revealed the fact that every countable recursively saturated model of ZF is cofinally condensable (i.e., $${\mathcal {M}}\cong {\mathcal {M}}(\alpha ) \prec _{\mathbb {L}_{{\mathcal {M}}}}{\mathcal {M}}$$ M ≅ M ( α ) ≺ L M M for an unbounded collection of $$\alpha \in \mathrm {Ord}^{{\mathcal {M}}}$$ α ∈ Ord M ). Moreover, it can be readily shown that any $$\omega $$ ω -nonstandard condensable model of $$\mathrm {ZF}$$ ZF is recursively saturated. These considerations provide the context for the following result that answers a question posed to the author by Paul Kindvall Gorbow.Theorem A.Assuming a modest set-theoretic hypothesis, there is a countable model $${\mathcal {M}}$$ M of ZFC that is bothdefinably well-founded (i.e., every first order definable element of $${\mathcal {M}}$$ M is in the well-founded part of $$\mathcal {M)}$$ M ) andcofinally condensable. We also provide various equivalents of the notion of condensability, including the result below.Theorem B.The following are equivalent for a countable model$${\mathcal {M}}$$ M of $$\mathrm {ZF}$$ ZF : (a) $${\mathcal {M}}$$ M is condensable. (b) $${\mathcal {M}}$$ M is cofinally condensable. (c) $${\mathcal {M}}$$ M is nonstandard and $$\mathcal {M}(\alpha )\prec _{\mathbb {L}_{{\mathcal {M}}}}{\mathcal {M}}$$ M ( α ) ≺ L M M for an unbounded collection of $$ \alpha \in \mathrm {Ord}^{{\mathcal {M}}}$$ α ∈ Ord M .


Author(s):  
Cezary Cieśliński

AbstractWe present a construction of a truth class (an interpretation of a compositional truth predicate) in an arbitrary countable recursively saturated model of first-order arithmetic. The construction is fully classical in that it employs nothing more than the classical techniques of formal proof theory.


1983 ◽  
Vol 48 (3) ◽  
pp. 623-628 ◽  
Author(s):  
Julia F. Knight

In [6], Nadel showed that if is a recursively saturated model of Pr = Th(ω, +) of power at most ℵ1, then there is a model such that ≡ ∞ω and can be expanded to a recursively saturated model of P. For a fixed completion T of P, can be chosen to have a recursively saturated expansion to a model of T just in case is recursive in T-saturated. (“Recursive in T-saturation” is defined just like recursive saturation except that the sets of formulas considered are those that are recursive in T.)Nadel also showed in [6] that for a fixed completion T of P, a countable nonstandard model of Pr can be expanded to a model of T (not necessarily recursively saturated) iff satisfies a condition called “exp(T)-saturation.” This condition is stronger than recursive saturation but weaker than recursive in T-saturation. Nadel left open the problem of characterizing the models of Pr of power ℵ1 such that for some , ≣ ∞ω and can be expanded to a model of T. The present paper gives such a characterization. The condition on is that it is recursively saturated, and for each n ∈ ω, the set Tn of Πn-sentences of T is recursive in some type realized in .This result can be interpreted in various ways, just as the results from [6] were interpreted in various ways in [4]. Friedman [2] introduced the notion of a “standard system.”


1976 ◽  
Vol 41 (2) ◽  
pp. 531-536 ◽  
Author(s):  
Jon Barwise ◽  
John Schlipf

The notions of recursively saturated and resplendent models grew out of the study of admissible sets with urelements and admissible fragments of Lω1ω, but, when applied to ordinary first order model theory, give us new tools for research and exposition. We will discuss their history in §3.The notion of saturated model has proven to be important in model theory. Its most important property for applications is that if , are saturated and of the same cardinality then = iff ≅ . See, e.g., Chang-Keisler [3]. The main drawback is that saturated models exist only under unusual assumptions of set theory. For example, if 2κ = κ+ then every theory T of L has a saturated model of power κ+. (Similarly, if κ is strongly inaccessible, then every T has a saturated model of power κ.) On the other hand, a theory T like Peano arithmetic, with types, cannot have a saturated model in any power κ with ω ≤ κ ≤ .One method for circumventing these problems of existence (or rather non-existence) is the use of “special” models (cf. [3]). If κ = Σλ<κ2λ, κ < ω, then every theory T of L has a special model of power κ. Such cardinals are large and, themselves, rather special. There are definite aesthetic objections to the use of these large, singular models to prove results about first order logic.


2008 ◽  
Vol 73 (3) ◽  
pp. 824-830 ◽  
Author(s):  
Fredrik Engström

AbstractLet (M, )⊨ ACA0 be such that , the collection of all unbounded sets in , admits a definable complete ultrafilter and let T be a theory extending first order arithmetic coded in such that M thinks T is consistent. We prove that there is an end-extension N ⊨ T of M such that the subsets of M coded in N are precisely those in . As a special case we get that any Scott set with a definable ultrafilter coding a consistent theory T extending first order arithmetic is the standard system of a recursively saturated model of T.


Jon Barwise and John Schlipf. On recursively saturated models of arithmetic. Model theory and algebra, A memorial tribute to Abraham Robinson, edited by D. H. Saracino and V. B. Weispfenning, Lecture notes in mathematics, vol. 498, Springer-Verlag, Berlin, Heidelberg, and New York, 1975, pp. 42–55. - Patrick Cegielski, Kenneth McAloon, and George Wilmers. Modèles récursivement saturés de l'addition et de la multiplication des entiers naturels. Logic Colloquium '80, Papers intended for the European summer meeting of the Association for Symbolic Logic, edited by D. van Dalen, D. Lascar, and T. J. Smiley, Studies in logic and the foundations of mathematics, vol. 108, North-Holland Publishing Company, Amsterdam, New York, and London, 1982, pp. 57–68. - Julia F. Knight. Theories whose resplendent models are homogeneous. Israel journal of mathematics, vol. 42 (1982), pp. 151–161. - Julia Knight and Mark Nadel. Expansions of models and Turing degrees. The journal of symbolic logic, vol. 47 (1982), pp. 587–604. - Julia Knight and Mark Nadel. Models of arithmetic and closed ideals. The journal of symbolic logic, vol. 47 no. 4 (for 1982, pub. 1983), pp. 833–840. - Henryk Kotlarski. On elementary cuts in models of arithmetic. Fundamenta mathematicae, vol. 115 (1983), pp. 27–31. - H. Kotlarski, S. Krajewski, and A. H. Lachlan. Construction of satisfaction classes for nonstandard models. Canadian mathematical bulletin—Bulletin canadien de mathématiques, vol. 24 (1981), pp. 283–293. - A. H. Lachlan. Full satisfaction classes and recursive saturation. Canadian mathematical bulletin—Bulletin canadien de mathématiques, pp. 295–297. - Leonard Lipshitz and Mark Nadel. The additive structure of models of arithmetic. Proceedings of the American Mathematical Society, vol. 68 (1978), pp. 331–336. - Mark Nadel. On a problem of MacDowell and Specker. The journal of symbolic logic, vol. 45 (1980), pp. 612–622. - C. Smoryński. Back-and-forth inside a recursively saturated model of arithmetic. Logic Colloquium '80, Papers intended for the European summer meeting of the Association for Symbolic Logic, edited by D. van Dalen, D. Lascar, and T. J. Smiley, Studies in logic and the foundations of mathematics, vol. 108, North-Holland Publishing Company, Amsterdam, New York, and London, 1982, pp. 273–278. - C. Smoryński and J. Stavi. Cofinal extension preserves recursive saturation. Model theory of algebra and arithmetic, Proceedings of the Conference on Applications of Logic to Algebra and Arithmetic held at Karpacz, Poland, September 1–7,1979, edited by L. Pacholski, J. Wierzejewski, and A. J. Wilkie, Lecture notes in mathematics, vol. 834, Springer-Verlag, Berlin, Heidelberg, and New York, 1980, pp. 338–345. - George Wilmers. Minimally saturated models. Model theory of algebra and arithmetic, Proceedings of the Conference on Applications of Logic to Algebra and Arithmetic held at Karpacz, Poland, September 1–7, 1979, edited by L. Pacholski, J. Wierzejewski, and A. J. Wilkie, Lecture notes in mathematics, vol. 834, Springer-Verlag, Berlin, Heidelberg, and New York, 1980, pp. 370–380.

1987 ◽  
Vol 52 (1) ◽  
pp. 279-284
Author(s):  
J.-P. Ressayre

2010 ◽  
Vol 16 (3) ◽  
pp. 345-358 ◽  
Author(s):  
Samuel Coskey ◽  
Roman Kossak

AbstractWe observe that the classification problem for countable models of arithmetic is Borel complete. On the other hand, the classification problems for finitely generated models of arithmetic and for recursively saturated models of arithmetic are Borel; we investigate the precise complexity of each of these. Finally, we show that the classification problem for pairs of recursively saturated models and for automorphisms of a fixed recursively saturated model are Borel complete.


Sign in / Sign up

Export Citation Format

Share Document