A certain class of models of Peano arithmetic

1983 ◽  
Vol 48 (2) ◽  
pp. 311-320 ◽  
Author(s):  
Roman Kossak

This paper is devoted to the study of recursively and short recursively saturated models of PA by means of so-called nonstandard satisfaction methods. The paper is intended to be self-contained. In particular, no knowledge of nonstandard satisfaction classes is assumed. In fact we shall not use this notion explicitly.We define a certain property of models of PA which we call the S-property and prove that properly short recursively saturated models (see Definition 2.1. below) are exactly short models with the S-property. The main result is that all properly short recursively saturated models are elementary cuts of recursively saturated models. This is a generalization to the uncountable case of the theorem of C. Smorynski [9] and is an easy application of some general results concerning cofinal extensions of models of PA which we discuss in §3.On the way we obtain another proof of the result of Smorynski and Stavi [10] which says that short recursive and recursive saturation is preserved under cofinal extensions.The author wants to thank H. Kotlarski and W. Marek for valuable suggestions concerning the subject of the paper.Special thanks must also go to J. Paris for the lemma used in the proof of Theorem 3.5.

1981 ◽  
Vol 24 (3) ◽  
pp. 295-297 ◽  
Author(s):  
A. H. Lachlan

AbstractIt is shown that a nonstandard model of Peano arithmetic which has a full satisfaction class is necessarily recursively saturated.


1987 ◽  
Vol 52 (3) ◽  
pp. 842-863 ◽  
Author(s):  
Stuart T. Smith

AbstractWe prove results about nonstandard formulas in models of Peano arithmetic which complement those of Kotlarski, Krajewski, and Lachlan in [KKL] and [L]. This enables us to characterize both recursive saturation and resplendency in terms of statements about nonstandard sentences. Specifically, a model of PA is recursively saturated iff is nonstandard and -logic is consistent. is resplendent iff is nonstandard, -logic is consistent, and every sentence φ which is consistent in -logic is contained in a full satisfaction class for . Thus, for models of PA, recursive saturation can be expressed by a (standard) -sentence and resplendency by a -sentence.


Jon Barwise and John Schlipf. On recursively saturated models of arithmetic. Model theory and algebra, A memorial tribute to Abraham Robinson, edited by D. H. Saracino and V. B. Weispfenning, Lecture notes in mathematics, vol. 498, Springer-Verlag, Berlin, Heidelberg, and New York, 1975, pp. 42–55. - Patrick Cegielski, Kenneth McAloon, and George Wilmers. Modèles récursivement saturés de l'addition et de la multiplication des entiers naturels. Logic Colloquium '80, Papers intended for the European summer meeting of the Association for Symbolic Logic, edited by D. van Dalen, D. Lascar, and T. J. Smiley, Studies in logic and the foundations of mathematics, vol. 108, North-Holland Publishing Company, Amsterdam, New York, and London, 1982, pp. 57–68. - Julia F. Knight. Theories whose resplendent models are homogeneous. Israel journal of mathematics, vol. 42 (1982), pp. 151–161. - Julia Knight and Mark Nadel. Expansions of models and Turing degrees. The journal of symbolic logic, vol. 47 (1982), pp. 587–604. - Julia Knight and Mark Nadel. Models of arithmetic and closed ideals. The journal of symbolic logic, vol. 47 no. 4 (for 1982, pub. 1983), pp. 833–840. - Henryk Kotlarski. On elementary cuts in models of arithmetic. Fundamenta mathematicae, vol. 115 (1983), pp. 27–31. - H. Kotlarski, S. Krajewski, and A. H. Lachlan. Construction of satisfaction classes for nonstandard models. Canadian mathematical bulletin—Bulletin canadien de mathématiques, vol. 24 (1981), pp. 283–293. - A. H. Lachlan. Full satisfaction classes and recursive saturation. Canadian mathematical bulletin—Bulletin canadien de mathématiques, pp. 295–297. - Leonard Lipshitz and Mark Nadel. The additive structure of models of arithmetic. Proceedings of the American Mathematical Society, vol. 68 (1978), pp. 331–336. - Mark Nadel. On a problem of MacDowell and Specker. The journal of symbolic logic, vol. 45 (1980), pp. 612–622. - C. Smoryński. Back-and-forth inside a recursively saturated model of arithmetic. Logic Colloquium '80, Papers intended for the European summer meeting of the Association for Symbolic Logic, edited by D. van Dalen, D. Lascar, and T. J. Smiley, Studies in logic and the foundations of mathematics, vol. 108, North-Holland Publishing Company, Amsterdam, New York, and London, 1982, pp. 273–278. - C. Smoryński and J. Stavi. Cofinal extension preserves recursive saturation. Model theory of algebra and arithmetic, Proceedings of the Conference on Applications of Logic to Algebra and Arithmetic held at Karpacz, Poland, September 1–7,1979, edited by L. Pacholski, J. Wierzejewski, and A. J. Wilkie, Lecture notes in mathematics, vol. 834, Springer-Verlag, Berlin, Heidelberg, and New York, 1980, pp. 338–345. - George Wilmers. Minimally saturated models. Model theory of algebra and arithmetic, Proceedings of the Conference on Applications of Logic to Algebra and Arithmetic held at Karpacz, Poland, September 1–7, 1979, edited by L. Pacholski, J. Wierzejewski, and A. J. Wilkie, Lecture notes in mathematics, vol. 834, Springer-Verlag, Berlin, Heidelberg, and New York, 1980, pp. 370–380.

1987 ◽  
Vol 52 (1) ◽  
pp. 279-284
Author(s):  
J.-P. Ressayre

1989 ◽  
Vol 54 (1) ◽  
pp. 177-189 ◽  
Author(s):  
Roman Kossak

In [KP] we have studied the problem of determining when a subset of a (countable) model M of PA can be coded in an elementary end extension of M. Sets with this property are called elementary extensional. In particular we can ask whether there are elementary extensional subsets of a model which have order type ω. It turns out that having elementary extensional subsets of order type ω is an interesting property connected with other structural properties of models of PA. We will call this property the ω-property. In [KP] the problem of characterizing models with the ω-property was left open. It is still open, and the aim of this paper is to present a collection of results pertaining to it. It should be mentioned that the same notion was studied by Kaufmann and Schmerl in [KS2] in connection with some weak notions of saturation which they discuss there. Our notion of a model with the ω-property corresponds to the notion of an upward monotonically ω-lofty cut.It is fairly easy to see that countable recursively saturated models (or in fact all recursively saturated models with cofinality ω) and all short recursively saturated models have the ω-property (Proposition 1.2 below). On the other hand, if we had asked the question about the existence of models with the ω-property before 1975 (when recursively saturated models were introduced) the answer would probably not have been that easy and we would have to come to notions close to recursive saturation.


2002 ◽  
Vol 67 (4) ◽  
pp. 1265-1273
Author(s):  
James H. Schmerl

Some highly saturated models of Peano Arithmetic are constructed in this paper, which consists of two independent sections. In § 1 we answer a question raised in [10] by constructing some highly saturated, rather classless models of PA. A question raised in [7], [3], ]4] is answered in §2, where highly saturated, nonstandard universes having no bad cuts are constructed.Highly saturated, rather classless models of Peano Arithmetic were constructed in [10]. The main result proved there is the following theorem. If λ is a regular cardinal and is a λ-saturated model of PA such that ∣M∣ > λ, then has an elementary extension of the same cardinality which is also λ-saturated and which, in addition, is rather classless. The construction in [10] produced a model for which cf() = λ+. We asked in Question 5.1 of [10] what other cofinalities could such a model have. This question is answered here in Theorem 1.1 of §1 by showing that any cofinality not immediately excluded is possible. Its proof does not depend on the theorem from [10]; in fact, the proof presented here gives a proof of that theorem which is much simpler and shorter than the one in [10].Recursively saturated, rather classless κ-like models of PA were constructed in [9]. In the case of singular κ such models were constructed whenever cf(κ) > ℵ0; no additional set-theoretic hypothesis was needed.


1978 ◽  
Vol 43 (2) ◽  
pp. 183-206 ◽  
Author(s):  
John Stewart Schlipf

One of the most significant by-products of the study of admissible sets with urelements is the emphasis it has given to recursively saturated models. As suggested in [Schlipf, 1977], countable recursively saturated models (for finite languages) possess many of the desirable properties of saturated and special models. The notion of resplendency was introduced to isolate some of these desirable properties. In §§1 and 2 of this paper we study these parallels, showing how they can be exploited to give new proofs of some traditional model theoretic theorems. This yields both pedagogical and philosophical advantages: pedagogical since countable recursively saturated models are easier to build and manipulate than saturated and special models; philosophical since it shows that uncountable models — which the downward Lowenheim–Skolem theorem tells us are in some sense not basic in the study of countable theories — are not needed in model theoretic proofs of these theorems. In §3 we apply our local results to get results about resplendent models of ZF set theory and PA (Peano arithmetic). In §4 we shall examine certain analogous results for admissible languages, most similar to, and seemingly generally slightly weaker than, already known results. (The Chang–Makkai sort of result, however, is new.)Although this paper is an outgrowth of work with admissible sets with urelements, I have tried to keep it as accessible as possible to those with a background only in finitary model theory. Thus §§1,2, and 3 should not involve any work with admissible sets. §4, however, is concerned with some admissible analogues to results in §2 and necessarily uses certain technical results of §11 5 of [Schlipf, 1977].


1989 ◽  
Vol 54 (4) ◽  
pp. 1382-1388 ◽  
Author(s):  
James H. Schmerl

The motivation for the results presented here comes from the following two known theorems which concern countable, recursively saturated models of Peano arithmetic.(1) if is a countable, recursively saturated model of PA, then for each infinite cardinal κ there is a resplendent which has cardinality κ. (See Theorem 10 of [1].)(2) if is a countable, recursively saturated model of PA, then is generated by a set of indiscernibles. (See [4].)It will be shown here that (1) and (2) can be amalgamated into a common generalization.(3) if is a countable, recursively saturated model of PA, then for each infinite cardinal κ there is a resplendent which has cardinality κ and which is generated by a set of indiscernibles.By way of contrast we will also get recursively saturated models of PA which fail to be resplendent and yet are generated by indiscernibles.(4) if is a countable, recursively saturated model of PA, then for each uncountable cardinal κ there is a κ-like recursively saturated generated by a set of indiscernibles.None of (1), (2) or (3) is stated in its most general form. We will make some comments concerning their generalizations. From now on let us fix a finite language L; all structures considered are infinite L-structures unless otherwise indicated.


Sign in / Sign up

Export Citation Format

Share Document