Travelling peakon and solitary wave solutions of modified Fornberg–Whitham equations with nonhomogeneous boundary conditions

Author(s):  
İhsan Çelikkaya

Abstract In this study, the numerical solutions of the modified Fornberg–Whitham (mFW) equation, which describes immigration of the solitary wave and peakon waves with discontinuous first derivative at the peak, have been obtained by the collocation finite element method using quintic trigonometric B-spline bases. Although there are solutions of this equation by semi-analytical and analytical methods in the literature, there are very few studies on the solution of the equation by numerical methods. Any linearization technique has not been used while applying the method. The stability analysis of the applied method is examined by the von-Neumann Fourier series method. To show the performance of the method, we have considered three test problems with nonhomogeneous boundary conditions having analytical solutions. The error norms L 2 and L ∞ are calculated to demonstrate the accuracy and efficiency of the presented numerical scheme.

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Joan Goh ◽  
Ahmad Abd. Majid ◽  
Ahmad Izani Md. Ismail

Numerical solutions of one-dimensional heat and advection-diffusion equations are obtained by collocation method based on cubicB-spline. Usual finite difference scheme is used for time and space integrations. CubicB-spline is applied as interpolation function. The stability analysis of the scheme is examined by the Von Neumann approach. The efficiency of the method is illustrated by some test problems. The numerical results are found to be in good agreement with the exact solution.


Author(s):  
Abdul Majeed ◽  
Mohsin Kamran ◽  
Noreen Asghar

Abstract This article focusses on the implementation of cubic B-spline approach to investigate numerical solutions of inhomogeneous time fractional nonlinear telegraph equation using Caputo derivative. L1 formula is used to discretize the Caputo derivative, while B-spline basis functions are used to interpolate the spatial derivative. For nonlinear part, the existing linearization formula is applied after generalizing it for all positive integers. The algorithm for the simulation is also presented. The efficiency of the proposed scheme is examined on three test problems with different initial boundary conditions. The influence of parameter α on the solution profile for different values is demonstrated graphically and numerically. Moreover, the convergence of the proposed scheme is analyzed and the scheme is proved to be unconditionally stable by von Neumann Fourier formula. To quantify the accuracy of the proposed scheme, error norms are computed and was found to be effective and efficient for nonlinear fractional partial differential equations (FPDEs).


2018 ◽  
Vol 22 ◽  
pp. 01061 ◽  
Author(s):  
Asif Yokus ◽  
Tukur Abdulkadir Sulaiman ◽  
Haci Mehmet Baskonus ◽  
Sibel Pasali Atmaca

This study acquires the exact and numerical approximations of a reaction-convection-diffusion equation arising in mathematical bi- ology namely; Murry equation through its analytical solutions obtained by using a mathematical approach; the modified exp(-Ψ(η))-expansion function method. We successfully obtained the kink-type and singular soliton solutions with the hyperbolic function structure to this equa- tion. We performed the numerical simulations (3D and 2D) of the obtained analytical solutions under suitable values of parameters. We obtained the approximate numerical and exact solutions to this equa- tion by utilizing the finite forward difference scheme by taking one of the obtained analytical solutions into consideration. We investigate the stability of the finite forward difference method with the equation through the Fourier-Von Neumann analysis. We present the L2 and L∞ error norms of the approximations. The numerical and exact approx- imations are compared and the comparison is supported by a graphic plot. All the computations and the graphics plots in this study are car- ried out with help of the Matlab and Wolfram Mathematica softwares. Finally, we submit a comprehensive conclusion to this study.


2020 ◽  
Vol 34 (29) ◽  
pp. 2050282
Author(s):  
Asıf Yokuş ◽  
Doğan Kaya

The traveling wave solutions of the combined Korteweg de Vries-modified Korteweg de Vries (cKdV-mKdV) equation and a complexly coupled KdV (CcKdV) equation are obtained by using the auto-Bäcklund Transformation Method (aBTM). To numerically approximate the exact solutions, the Finite Difference Method (FDM) is used. In addition, these exact traveling wave solutions and numerical solutions are compared by illustrating the tables and figures. Via the Fourier–von Neumann stability analysis, the stability of the FDM with the cKdV–mKdV equation is analyzed. The [Formula: see text] and [Formula: see text] norm errors are given for the numerical solutions. The 2D and 3D figures of the obtained solutions to these equations are plotted.


2018 ◽  
Vol 29 (06) ◽  
pp. 1850043 ◽  
Author(s):  
Ali Başhan ◽  
N. Murat Yağmurlu ◽  
Yusuf Uçar ◽  
Alaattin Esen

In the present paper, a novel perspective fundamentally focused on the differential quadrature method using modified cubic B-spline basis functions are going to be applied for obtaining the numerical solutions of the complex modified Korteweg–de Vries (cmKdV) equation. In order to test the effectiveness and efficiency of the present approach, three test problems, that is single solitary wave, interaction of two solitary waves and interaction of three solitary waves will be handled. Furthermore, the maximum error norm [Formula: see text] will be calculated for single solitary wave solutions to measure the efficiency and the accuracy of the present approach. Meanwhile, the three lowest conservation quantities will be calculated and also used to test the efficiency of the method. In addition to these test tools, relative changes of the invariants will be calculated and presented. In the end of these processes, those newly obtained numerical results will be compared with those of some of the published papers. As a conclusion, it can be said that the present approach is an effective and efficient one for solving the cmKdV equation and can also be used for numerical solutions of other problems.


Sign in / Sign up

Export Citation Format

Share Document