scholarly journals Ferrotorryweiserite, Rh5Fe10S16, a New Mineral Species from the Sisim Placer Zone, Eastern Sayans, Russia, and the Torryweiserite–Ferrotorryweiserite Series

Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1420
Author(s):  
Andrei Y. Barkov ◽  
Nadezhda D. Tolstykh ◽  
Nobumichi Tamura ◽  
Robert F. Martin ◽  
Andrew M. McDonald ◽  
...  

Ferrotorryweiserite, Rh5Fe10S16, occurs as small grains (≤20 µm) among droplet-like inclusions (up to 50 μm in diameter) of platinum-group minerals (PGM), in association with oberthürite or Rh-bearing pentlandite, laurite, and a Pt-Pd-Fe alloy (likely isoferroplatinum and Fe-Pd-enriched platinum), hosted by placer grains of Os-Ir alloy (≤0.5 mm) in the River Ko deposit. The latter is a part of the Sisim placer zone, which is likely derived from ultramafic units of the Lysanskiy layered complex, southern Krasnoyarskiy kray, Russia. The mineral is opaque, gray to brownish gray in reflected light, very weakly bireflectant, not pleochroic to weakly pleochroic (grayish to light brown tints), and weakly anisotropic. The calculated density is 5.93 g·cm–3. Mean results (and ranges) of four WDS analyses are: Ir 18.68 (15.55–21.96), Rh 18.34 (16.32–20.32), Pt 0.64 (0.19–1.14), Ru 0.03 (0.00–0.13), Os 0.07 (0.02–0.17), Fe 14.14 (13.63–14.64), Ni 13.63 (12.58–14.66), Cu 4.97 (3.42–6.41), Co 0.09 (0.07–0.11), S 29.06 (28.48–29.44), and total 99.66 wt. %. They correspond to the following formula calculated for a total of 31 atoms per formula unit: (Rh3.16Ir1.72Pt0.06Ru0.01Os0.01)Σ4.95(Fe4.48Ni4.11Cu1.38Co0.03)Σ10.00S16.05. The results of synchrotron micro-Laue diffraction studies indicate that ferrotorryweiserite is trigonal; its probable space group is Rm (#166) based on its Ni-analog, torryweiserite. The unit-cell parameters refined from 177 reflections are a = 7.069 (2) Å, c = 34.286 (11) Å, V = 1484 (1) Å3, and Z = 3. The c:a ratio is 4.8502. The strongest eight peaks in the X-ray diffraction pattern derived from results of micro-Laue diffraction study [d in Å(hkil)(I)] are 2.7950 (205) (100); 5.7143 (0006) (60); 1.7671 (220) (44.4); 3.0486 (201) (39.4); 5.7650 (102) (38.6); 2.5956 (207) (37.8); 3.0058 (116) (36.5); and 1.5029 (412) (35.3). Ferrotorryweiserite and the associated PGM crystallized from microvolumes of residual melt at late stages of crystallization of grains of Os- and Ir-dominant alloys occurred in lode zones of chromitites of the Lysanskiy layered complex. In a particular case, the residual melt is disposed peripherally around a core containing a disequilibrium association of magnesian olivine (Fo72.9–75.6) and albite (Ab81.6–86.4), with the development of skeletal crystals of titaniferous augite: Wo40.8–43.2En26.5–29.3Fs20.3–22.6Aeg6.9–9.5 (2.82–3.12 wt. % TiO2). Ferrotorryweiserite represents the Fe-dominant analog of torryweiserite. We also report occurrences of ferrotorryweiserite in the Marathon deposit, Coldwell Complex, Ontario, Canada, and infer the existence of the torryweiserite–ferrotorryweiserite solid solution in other deposits and complexes.

Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 545
Author(s):  
Andrei Y. Barkov ◽  
Nadezhda D. Tolstykh ◽  
Robert F. Martin ◽  
Andrew M. McDonald

Tamuraite, ideally Ir5Fe10S16, occurs as discrete phases (≤20 μm) in composite inclusions hosted by grains of osmium (≤0.5 mm across) rich in Ir, in association with other platinum-group minerals in the River Ko deposit of the Sisim Placer Zone, southern Krasnoyarskiy Kray, Russia. In droplet-like inclusions, tamuraite is typically intergrown with Rh-rich pentlandite and Ir-bearing members of the laurite–erlichmanite series (up to ~20 mol.% “IrS2”). Tamuraite is gray to brownish gray in reflected light. It is opaque, with a metallic luster. Its bireflectance is very weak to absent. It is nonpleochroic to slightly pleochroic (grayish to light brown tints). It appears to be very weakly anisotropic. The calculated density is 6.30 g·cm−3. The results of six WDS analyses are Ir 29.30 (27.75–30.68), Rh 9.57 (8.46–10.71), Pt 1.85 (1.43–2.10), Ru 0.05 (0.02–0.07), Os 0.06 (0.03–0.13), Fe 13.09 (12.38–13.74), Ni 12.18 (11.78–13.12), Cu 6.30 (6.06–6.56), Co 0.06 (0.04–0.07), S 27.23 (26.14–27.89), for a total of 99.69 wt %. This composition corresponds to (Ir2.87Rh1.75Pt0.18Ru0.01Os0.01)Σ4.82(Fe4.41Ni3.90Cu1.87Co0.02)Σ10.20S15.98, calculated based on a total of 31 atoms per formula unit. The general formula is (Ir,Rh)5(Fe,Ni,Cu)10S16. Results of synchrotron micro-Laue diffraction studies indicate that tamuraite is trigonal. Its probable space group is R–3m (#166), and the unit-cell parameters are a = 7.073(1) Å, c = 34.277(8) Å, V = 1485(1) Å3, and Z = 3. The c:a ratio is 4.8462. The strongest eight peaks in the X-ray diffraction pattern [d in Å(hkl)(I)] are: 3.0106(26)(100), 1.7699(40)(71), 1.7583(2016)(65), 2.7994(205)(56), 2.9963(1010)(50), 5.7740(10)(45), 3.0534(20)(43) and 2.4948(208)(38). The crystal structure is derivative of pentlandite and related to that of oberthürite and torryweiserite. Tamuraite crystallized from a residual melt enriched in S, Fe, Ni, Cu, and Rh; these elements were incompatible in the Os–Ir alloy that nucleated in lode zones of chromitites in the Lysanskiy layered complex, Eastern Sayans, Russia. The name honors Nobumichi Tamura, senior scientist at the Advanced Light Source of the Lawrence Berkeley National Laboratory, Berkeley, California.


2013 ◽  
Vol 77 (7) ◽  
pp. 3039-3046 ◽  
Author(s):  
D. Topa ◽  
E. Makovicky ◽  
H. Tajedin ◽  
H. Putz ◽  
G. Zagler

AbstractBarikaite, ideally Pb10Ag3(Sb8As11)Σ19S40, is a new mineral species from the Barika Au-Ag deposit, Azarbaijan Province, western Iran. It was formed in fractures developed in silica bands situated in massive banded pyrite and baryte ores. These fractures house veinlets that contain a number of Ag-As-Sb-Pb-rich sulfosalts, tetrahedrite-tennantite, realgar, pyrite and electrum. Barikaite appears as inclusions in guettardite. The mineral is opaque, greyish black with a metallic lustre; it is brittle without any discernible cleavage. In reflected light barikaite is greyish white, pleochroism is distinct, white to dark grey. Internal reflections are absent. In crossed polars, anisotropism is distinct with rotation tints in shades of grey. The reflectance data (%, in air) are: 37.0, 39.3 at 470 nm, 34.1, 36.9 at 546 nm, 33.1, 36.2 at 589 nm and 31.3, 34.1 at 650 nm. The Mohs hardness is 3–3½, microhardness VHN50 exhibits the range 192 – 212, with a mean value of 200 kg mm–2. The average results of five electron-microprobe analyses in a grain are (in wt.%): Pb 35.77(33), Ag 5.8(1), Tl 0.15(08), Sb 18.33(09), As 15.64(16), S 24.00(15), total 99.69(10) wt.%, corresponding to Pb9.31Ag2.90Tl0.04(Sb8.12As11.26)Σ19.36S40.37 (on the basis of 32Me + 40S = 72 a.p.f.u.). The simplified formula, Pb10Ag3(Sb8As11)Σ19S40, is in accordance with the results of a crystal-structure analysis, and requires Pb 37.89, Ag 5.91, Sb 17.79, As 15.05 and S 23.42 (wt.%). The variation of chemical composition is minor, the empirical formula ranging from Pb10.39Ag2.32Tl0.02Sb7.52As11.27S40.49 to Pb9.24Ag2.93Tl0.04Sb8.13As11.35S40.31. Barikaite has monoclinic symmetry, space group P21/n and unit-cell parameters a 8.5325(7) Å, b 8.0749(7) Å, c 24.828(2) Å, and b 99.077(6)o, Z = 1. Calculated density for the empirical formula is 5.34 (g cm–3). The strongest eight lines in the (calculated) powder-diffraction pattern [d in Å(I)(hkl)] are: 3.835(63)(022), 3.646(100)(016), 3.441(60)(212), 3.408(62)(14), 2.972(66)(16), 2.769(91)(222), 2.752(78)(24) and 2.133(54)(402). Barikaite is the N = 4 member of the sartorite homologous series with a near-equal role of As and Sb, which have an ordered distribution pattern in the structure. It is a close homeotype of rathite and more distantly related to dufrénoysite (both distinct, pure arsenian N = 4 members) and it completes the spectrum of Sb-rich members of the sartorite homologous series. The new mineral and its name have been approved by the IMA-CNMNC (IMA 2012-055).


2009 ◽  
Vol 73 (1) ◽  
pp. 43-50 ◽  
Author(s):  
R. G. Yusupov ◽  
C. J. Stanley ◽  
M. D. Welch ◽  
J. Spratt ◽  
G. Cressey ◽  
...  

Mavlyanovite, ideally Mn5Si3, is a new mineral from a lamproite diatreme close to the upper reaches of the Koshmansay river, Chatkal ridge, Uzbekistan. It occurs together with unnamed manganese siliciphosphide and manganese silicicarbide minerals in round to ovoid segregations, up to 10 cm in diameter, in volcanic glass. Segregations of hexagonal prismatic mavlyanovite up to 1–2 mm occur in interstices in the matrix and tiny inclusions (1–2 μm) of alabandite and khamrabaevite occur within mavlyanovite. It is opaque with a metallic lustre, has a dark-grey streak, is brittle with a conchoidal fracture and a near-perfect basal cleavage. VHN100 is 1029–1098 kg/mm2 (Mohs hardness ~7). In plane-polarized reflected light, mavlyanovite is a pale-brownish-grey against the accompanying unnamed manganese silicicarbide (white). Reflectance values and colour data are tabulated. Average results of 19 electronmicroprobe analyses give Mn70.84, Fe 6.12, Si 22.57, Ti 0.15, P 0.18, total 99.86 wt.% leading to an empirical formula of (Mn4.66Fe0.40)5.06(Si2.91Ti0.01P0.02)2.94 based on8 a.p.f.u. The calculated density is 6.06 g/cm3, (on the basis of the empirical formula and unit-cell parameters from the structure determination). Mavlyanovite is hexagonal (P63/mcm) with a 6.8971(7), c 4.8075(4) Å, V 198.05(3) Å3 and Z = 2. The structure has been determined and refined to R1 = 0.017, wR2 = 0.044, GoF = 1.16. Mavlyanovite is the naturally-occurring analogue of synthetic Mn5Si3 which is the parent aristotype structure of the Nowotny intermetallic phases studied extensively by the material-science community. It is also the Mn-dominant analogue of xifengite Fe5Si3. The mineral name honours Academician Gani Arifkhanovich Mavlyanov (1910–1988), for his contributions to the understanding of the geology of Uzbekistan.


2005 ◽  
Vol 69 (4) ◽  
pp. 447-453 ◽  
Author(s):  
C. J. Stanley ◽  
A. J. Criddle ◽  
J. Spratt ◽  
A. C. Roberts ◽  
J. T. Szymański ◽  
...  

AbstractKingstonite, ideally Rh3S4, is a new mineral from the Bir Bir river, Yubdo District, Wallaga Province, Ethiopia. It occurs as subhedral, tabular elongate to anhedral inclusions in a Pt-Fe nugget with the associated minerals isoferroplatinum, tetraferroplatinum, a Cu-bearing Pt-Fe alloy, osmium, enriched oxide remnants of osmium, laurite, bowieite, ferrorhodsite and cuprorhodsite. It is opaque with a metallic lustre, has a black streak, is brittle and has a subconchoidal fracture and a good cleavage parallel to [001]. VHN25 is 871–920 kg/mm2. In plane-polarized reflected light, kingstonite is a pale slightly brownish grey colour. It is weakly pleochroic and displays a weak bireflectance. It does not possess internal reflections. The anisotropy is weak to moderate in dull greys and browns. Reflectance data and colour values are tabulated. Average results of twenty electron microprobe analyses on four grains give Rh 46.5, Ir 16.4, Pt 11.2, S 25.6, total 99.7 wt.%. The empirical formula is (Rh2.27Ir0.43Pt0.29)Σ2.99S4.01, based on 7 atoms per formula unit (a.p.f.u.). Kingstonite is monoclinic (C2/m) with a = 10.4616(5), b = 10.7527(5), c = 6.2648(3) Å, β = 109.000(5)°, V = 666.34(1) Å3 (Z = 6). The calculated density is 7.52 g/cm3 (on the basis of the empirical formula and unit-cell parameters refined from powder data). The seven strongest X-ray powder-diffraction lines [d in Å(I) (hkl)] are: 3.156 (100) (310), 3.081 (100) (1̄31), 2.957 (90) (002), 2.234 (60) (202), 1.941 (50) (2̄23), 1.871 (80) (4̄41) and 1.791 (90) (060, 1̄33). The structure of kingstonite was solved and refined to Rp = 3.8%. There are four distinct metal sites with Rh occupancies of 0.64–0.89. Two metal sites are regular RhS6 octahedra that share edges to form a ribbon running parallel to c. The other two metal sites are coordinated by 4 S + 2 Rh and 5 S + 2 Rh and define a puckered Rh6 ring. The ribbons of regular RhS6 octahedra alternate with the columns of Rh6 rings linked by S atoms. S–S bridges also connect the ribbons and columns. As such, the kingstonite structure is essentially that of synthetic Rh3S4. Minor differences in the unit-cell parameters, atom coordinates and displacement parameters of kingstonite and synthetic Rh3S4 arise from the considerable substitution of Ir for Rh. The mineral name honours Gordon Kingston (formerly of Cardiff University) in recognition of his contributions to platinum group element mineralogy and the geology of their mineral deposits.


2015 ◽  
Vol 79 (3) ◽  
pp. 625-634
Author(s):  
Ulf Hålenius ◽  
Ferdinando Bosi

AbstractGatedalite, Zr(Mn22+Mn43+)SiO12, is a new mineral of the braunite group. It is found in hausmannite-impregnated skarn together with jacobsite, Mn-bearing calcite, tephroite, Mn-bearing phlogopite, långbanite, pinakiolite and oxyplumboroméite at the Långban Mn-Fe oxide deposit, Värmland, central Sweden. The mineral occurs as very rare, small (≤60 μm), grey, submetallic, irregularly rounded anhedral grains. Gatedalite has a calculated density of 4.783 g/cm3. It is opaque and weakly anisotropic with reflectivity in air varying between 17.1 and 20.8% in the visible spectral range. Gatedalite is tetragonal, space groupI41/acd, with the unit-cell parametersa= 9.4668(6) Å,c= 18.8701(14) Å,V= 1691.1(2) Å3andZ= 8. The crystal structure was refined to anR1 index of 5.09% using 1339 unique reflections collected with MoKαX-ray radiation. The five strongest powder X-ray diffraction lines [din Å, (I), (hkl)] are: 2.730(100)(224), 2.367(12)(040), 1.6735(12)(440), 1.6707(29)(048) and 1.4267(16)(264). Electron microprobe analyses in combination with single-crystal structure refinement resulted in the empirical formula: (Zr0.494+Mn0.402+Mg0.07Ca0.02Zn0.01Ce0.013+)Σ1.00(Mn4.443+Fe0.593+Mn0.572+Mg0.41Al0.01)Σ6.02Si0.99O12. Gatedalite is a member of the braunite group (general formula AB6SiO12). It is related to braunite (Mn2+Mn63+SiO12) through the net cation exchange (Zr4++ Mn2+) → 2Mn3+, which results from the substitutions Zr4+→ Mn2+at the 8-fold coordinated site (Ain the general formula) coupled with a 2Mn2+→ 2Mn3+substitution at the 6-fold coordinated sites (Bin the general formula).


Author(s):  
Dan Holtstam ◽  
Luca Bindi ◽  
Paola Bonazzi ◽  
Hans-Jürgen Förster ◽  
Ulf B. Andersson

ABSTRACT Arrheniusite-(Ce) is a new mineral (IMA 2019-086) from the Östanmossa mine, one of the Bastnäs-type deposits in the Bergslagen ore region, Sweden. It occurs in a metasomatic F-rich skarn, associated with dolomite, tremolite, talc, magnetite, calcite, pyrite, dollaseite-(Ce), parisite-(Ce), bastnäsite-(Ce), fluorbritholite-(Ce), and gadolinite-(Nd). Arrheniusite-(Ce) forms anhedral, greenish-yellow translucent grains, exceptionally up to 0.8 mm in diameter. It is optically uniaxial (–), with ω = 1.750(5), ε = 1.725(5), and non-pleochroic in thin section. The calculated density is 4.78(1) g/cm3. Arrheniusite-(Ce) is trigonal, space group R3m, with unit-cell parameters a = 10.8082(3) Å, c = 27.5196(9) Å, and V = 2784.07(14) Å3 for Z = 3. The crystal structure was refined from X-ray diffraction data to R1 = 3.85% for 2286 observed reflections [Fo > 4σ(Fo)]. The empirical formula for the fragment used for the structural study, based on EPMA data and results from the structure refinement, is: (Ca0.65As3+0.35)Σ1(Mg0.57Fe2+0.30As5+0.10Al0.03)Σ1[(Ce2.24Nd2.13La0.86Gd0.74Sm0.71Pr0.37)Σ7.05(Y2.76Dy0.26Er0.11Tb0.08Tm0.01Ho0.04Yb0.01)Σ3.27Ca4.14]Σ14.46(SiO4)3[(Si3.26B2.74)Σ6O17.31F0.69][(As5+0.65Si0.22P0.13)Σ1O4](B0.77O3)F11; the ideal formula obtained is CaMg[(Ce7Y3)Ca5](SiO4)3(Si3B3O18)(AsO4)(BO3)F11. Arrheniusite-(Ce) belongs to the vicanite group of minerals and is distinct from other isostructural members mainly by having a Mg-dominant, octahedrally coordinated site (M6); it can be considered a Mg-As analog to hundholmenite-(Y). The threefold coordinated T5 site is partly occupied by B, like in laptevite-(Ce) and vicanite-(Ce). The mineral name honors C.A. Arrhenius (1757–1824), a Swedish officer and chemist, who first discovered gadolinite-(Y) from the famous Ytterby pegmatite quarry.


2021 ◽  
pp. 1-8
Author(s):  
Jiří Sejkora ◽  
Pavel Škácha ◽  
Jakub Plášil ◽  
Zdeněk Dolníček ◽  
Jana Ulmanová

Abstract The new mineral hrabákite (IMA2020-034) was found in siderite–sphalerite gangue with minor dolomite–ankerite at the dump of shaft No. 9, one of the mines in the abandoned Příbram uranium and base-metal district, central Bohemia, Czech Republic. Hrabákite is associated with Pb-rich tučekite, Hg-rich silver, stephanite, nickeline, millerite, gersdorffite, sphalerite and galena. The new mineral occurs as rare prismatic crystals up to 120 μm in size and allotriomorphic grains. Hrabákite is grey with a brownish tint. Mohs hardness is ca. 5–6; the calculated density is 6.37 g.cm–3. In reflected light, hrabákite is grey with a brown hue. Bireflectance is weak and pleochroism was not observed. Anisotropy under crossed polars is very weak (brownish tints) to absent. Internal reflections were not observed. Reflectance values of hrabákite in air (Rmin–Rmax, %) are: 39.6–42.5 at 470 nm, 45.0–47.5 at 546 nm, 46.9–49.2 at 589 nm and 48.9–51.2 at 650 nm). The empirical formula for hrabákite, based on electron-microprobe analyses (n = 11), is (Ni8.91Co0.09Fe0.03)9.03(Pb0.94Hg0.04)0.98(Sb0.91As0.08)0.99S7.99. The ideal formula is Ni9PbSbS8, which requires Ni 47.44, Pb 18.60, Sb 10.93 and S 23.03, total of 100.00 wt.%. Hrabákite is tetragonal, P4/mmm, a = 7.3085(4), c = 5.3969(3) Å, with V = 288.27(3) Å3 and Z = 1. The strongest reflections of the calculated powder X-ray diffraction pattern [d, Å (I)(hkl)] are: 3.6543(57)(200); 3.2685(68)(210); 2.7957(100)(211); 2.3920(87)(112); 2.3112(78)(310); 1.8663(74)(222); and 1.8083(71)(302). According to the single-crystal X-ray diffraction data (Rint = 0.0218), the unit cell of hrabákite is undoubtedly similar to the cell reported for tučekite. The structure contains four metal cation sites, two Sb (Sb1 dominated by Pb2+) and two Ni (with minor Co2+ content) sites. The close similarity in metrics between hrabákite and tučekite is due to similar bond lengths of Pb–S and Sb–S pairs. Hrabákite is named after Josef Hrabák, the former professor of the Příbram Mining College.


2018 ◽  
Vol 82 (4) ◽  
pp. 993-1005 ◽  
Author(s):  
Richard Pažout ◽  
Jiří Sejkora

ABSTRACTA new mineral species, staročeskéite, ideally Ag0.70Pb1.60(Bi1.35Sb1.35)Σ2.70S6, has been found at Kutná Hora ore district, Czech Republic. The mineral occurs in the late-stage Bi-mineralization associated with other lillianite homologues (gustavite, terrywallaceite, vikingite, treasurite, eskimoite and Bi-rich andorite-group minerals) and other bismuth sulfosalts (izoklakeite, cosalite and Bi-rich jamesonite) in quartz gangue. The mineral occurs as lath shaped crystals or anhedral grains up to 80 µm × 70 µm, growing together in aggregates up to 200 µm × 150 µm across. Staročeskéite is steel-grey in colour and has a metallic lustre, the calculated density is 6.185 g/cm3. In reflected light staročeskéite is greyish white; bireflectance and pleochroism are weak with greyish tints. Anisotropy is weak to medium with grey to bluish grey rotation tints. Internal reflections were not observed. The empirical formula based on electron probe microanalyses and calculated on 11 apfu is: (Ag0.68Cu0.01)Σ0.69(Pb1.56Fe0.01Cd0.01)Σ1.58(Bi1.32Sb1.37)Σ2.69(S6.04Se0.01)Σ6.05. The ideal formula is Ag0.70Pb1.60(Bi1.35Sb1.35)Σ2.70S6, which requires Ag 7.22, Pb 31.70, Bi 26.97, Sb 15.72 and S 18.39 wt.%, total 100.00 wt.%. Staročeskéite is a member of the lillianite homologous series with N = 4. Unlike gustavite and terrywallaceite, staročeskéite, similarly to lillianite, is orthorhombic, space group Cmcm, with a = 4.2539(8), b = 13.3094(8), c = 19.625(1) Å, V = 1111.1(2) Å3 and Z = 4. The structure of staročeskéite contains four sulfur sites and three metal sites: one pure Pb site and two mixed sites, M1 (0.52Bi + 0.356Ag + 0.124Sb) and M2 (0.601Sb + 0.259Pb + 0.14Bi). The mineral is characterized by the Bi:Sb ratio 1:1 (Bi/(Bi + Sb) = 0.50) and the Ag+ + Bi3+, Sb3+ ↔ 2 Pb2+ substitution (L%) equal to 70%. Thus the mineral lies between two series of the lillianite structures with N = 4, between the lillianite–gustavite series and the andorite series.


1979 ◽  
Vol 43 (325) ◽  
pp. 131-133 ◽  
Author(s):  
M. Banaś ◽  
D. Atkin ◽  
J. F. W. Bowles ◽  
P. R. Simpson

SummaryBohdanowiczite was first described in 1967 but incomplete data prevented its acceptance as a new mineral at that time. Additional data on the same material now characterize bohdanowiczite as a new species with the formula:3[(Ag0.98Cu0.02)0.97(Bi0.97Pb0.03)1.02(Se0.83S0.17)2.01]The mineral occurs in intimate intergrowths with clausthalite and wittichenite in polymetallic mineralization at Kletno in Poland. In reflected light bohdanowiczite has a creamy-yellow colour and short polysynthetic twinning is frequently observed. Cell parameters indexed on a hexagonal lattice are a = 4.183±0.008 Å and c = 19.561± 0.016 Å. Pm1 is the most likely space group. The strongest lines of the powder pattern are 2.91(100), 2.03(30), 3.40(20), 6.54(20), 2.09(18), 3.26(18). The calculated density is 7.72 gm/cm3 and the VHN between 63 and 96 kg/mm2.


2004 ◽  
Vol 68 (2) ◽  
pp. 241-245 ◽  
Author(s):  
A. C. Roberts ◽  
J. A. R. Stirling ◽  
A. J. Criddle ◽  
G. E. Dunning ◽  
J. Spratt

AbstractAurivilliusite, ideally Hg2+Hg1+OI, is monoclinic, C 2/c, with unit-cell parameters refined from X-ray powder data: a= 17.580(6), b= 6.979(1), c= 6.693(3)Å, β = 101.71(4)°, V = 804.0(5)Å3, a:b:c= 2.5190:1:0.9590,Z = 8. The strongest six lines of the X-ray powder-diffraction pattern [din Å (I )(hkl)] are: 8.547(70)(200), 3.275(100)(002), 2.993(80)(2̄21), 2.873(80)(600), 2.404(50b)(6̄02, 421, 2̄22) and 1.878(50)(2̄23). This extremely rare mineral was collected from a small prospect pit near the longabandoned Clear Creek mercury mine, New Idria district, San Benito County, California, USA. It is intimately intermixed with another new undefined Hg-O-I phase (‘CCUK-15’), and is also closely associated with native mercury, cinnabar and edgarbaileyite in a host rock principally composed of quartz and magnesite. Aurivilliusite occurs in a cm-wide quartz vein predominantly as irregular-shaped thin patches ‘splattered’ on the quartz surface; patches vary in size from 10–20 μm up to 0.5 mm. The only known subhedral platy brightly reflecting crystal fragment, with major ﹛100﹜ form and distinct ﹛100﹜ cleavage, did not exceed 0.2 mm in longest dimension. The mineral is dark grey-black with a dark red-brown streak. Physical properties include: metallic lustre; opaque; non-fluorescent; brittle; uneven fracture; calculated density 8.96 g/cm3 (empirical formula), 8.99 g/cm3 (ideal formula). In polished section in plane-polarized reflected light, aurivilliusite resembles cinnabar, is extremely light sensitive, shows twinning and no internal reflections, and exhibits an unusual ‘red light’ coalescing phenomena. Averaged and corrected results of electron-microprobe analyses yielded HgO 40.10, Hg2O 38.62, I 22.76, Br 0.22, Cl 0.06, sum 101.76, less O = I + Br + Cl –1.46, total 100.30 wt.%, corresponding to Hg1.002+Hg1.001+ O1.01(I0.97Br0.01Cl0.01)Σ0.99, based on O + I + Br + Cl = 2 atoms per formula unit (a.p.f.u.). The original value for Hg, 74.27 wt.%, was partitioned in a HgO:Hg2O ratio of 1:1 after the discovery of the crystal-structure paper dealing with the synthetic equivalent of aurivilliusite. The mineral name is in honour of the late Dr Karin Aurivillius (1920 –1982), chemistcrystallographer at the University of Lund, Sweden, for her significant contributions to the crystal chemistry of Hg-bearing inorganic compounds. Aurivilliusite is related chemically to terlinguaite, Hg2+Hg1+OCl, but has a different structure and X-ray characteristics.


Sign in / Sign up

Export Citation Format

Share Document