natural variants
Recently Published Documents


TOTAL DOCUMENTS

221
(FIVE YEARS 67)

H-INDEX

34
(FIVE YEARS 5)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Daichao Wu ◽  
Alexander Kolesnikov ◽  
Rui Yin ◽  
Johnathan D. Guest ◽  
Ragul Gowthaman ◽  
...  

AbstractT cells play a vital role in combatting SARS-CoV-2 and forming long-term memory responses. Whereas extensive structural information is available on neutralizing antibodies against SARS-CoV-2, such information on SARS-CoV-2-specific T-cell receptors (TCRs) bound to their peptide–MHC targets is lacking. Here we determine the structures of a public and a private TCR from COVID-19 convalescent patients in complex with HLA-A2 and two SARS-CoV-2 spike protein epitopes (YLQ and RLQ). The structures reveal the basis for selection of particular TRAV and TRBV germline genes by the public but not the private TCR, and for the ability of the TCRs to recognize natural variants of RLQ but not YLQ. Neither TCR recognizes homologous epitopes from human seasonal coronaviruses. By elucidating the mechanism for TCR recognition of an immunodominant yet variable epitope (YLQ) and a conserved but less commonly targeted epitope (RLQ), this study can inform prospective efforts to design vaccines to elicit pan-coronavirus immunity.


2021 ◽  
Author(s):  
Odey Bsharat ◽  
Michael Doyle ◽  
Maxime Munch ◽  
Braeden Mair ◽  
Christopher Cooze ◽  
...  

a-Amino acids are among the essential chemical building blocks of life. These structures are embedded in many small molecule pharmaceuticals and are the primary components of peptide-based therapeutics and biologics. Isotopically labeled a-amino acids and their derivatives have widespread use in structural and mechanistic biochemistry, quantitative proteomics, absorption distribution metabolism and excretion (ADME) profiling, and as imaging agents in positron emission tomography (PET) techniques. The preparation of carbon-labeled a-amino acids remains difficult and time consuming, with established methods involving label incorporation at an early stage of synthesis. This explains the high cost and scarcity of C-labeled products and presents a major challenge in 11C applications (11C t1/2 = 20 min). Here we report that simple aldehydes catalyze the isotopic carboxylate exchange of native a-amino acids with *CO2 (* = 14, 13, 11). Proteinogenic a-amino acids and many non-natural variants containing diverse functional groups undergo labeling. The reaction likely proceeds via the trapping of *CO2 by imine-carboxylate intermediates to generate aminomalonates that are prone to monodecarboxylation. Tempering catalyst electrophilicity was key to preventing irreversible aldehyde consumption. The pre-generation of the imine carboxylate intermediate allows for the rapid and late-stage 11C-radiolabeling of a-amino acids in the presence of 11CO2.


Author(s):  
Viduthalai Rasheedkhan Regina ◽  
Parisa Noorian ◽  
Clarence Sim Bo Wen ◽  
Florentin Constancias ◽  
Eganathan Kaliyamoorthy ◽  
...  

Vibrio vulnificus is an opportunistic human pathogen and autochthonous inhabitant of coastal marine environments, where the bacterium is under constant predation by heterotrophic protists or protozoans. As a result of this selection pressure, genetic variants with anti-predation mechanisms are selected for and persist in the environment. Such natural variants may also be pathogenic to animal or human hosts, making it important to understand these defence mechanisms. To identify anti-predator strategies, thirteen V. vulnificus strains of different genotypes isolated from diverse environments were exposed to predation by the ciliated protozoan, Tetrahymena pyriformis , and only strain ENV1 was resistant to predation. Further investigation of the cell-free supernatant showed that ENV1 acidifies the environment by the excretion of organic acids, which is toxic to T. pyriformis . As this predation resistance was dependent on the availability of iron, transcriptomes of V. vulnificus in iron-replete and iron-deplete conditions were compared. This analysis revealed that ENV1 ferments pyruvate and the resultant acetyl-CoA leads to acetate synthesis under aerobic conditions, a hallmark of overflow metabolism. The anaerobic respiration global regulator, arcA , was upregulated when iron was available. An Δ arcA deletion mutant of ENV1 accumulated less acetate and importantly, was sensitive to grazing by T. pyriformis . Based on the transcriptome response and quantification of metabolites, we conclude that ENV1 has adapted to overflow metabolism and has lost a control switch that shifts metabolism from acetate excretion to acetate assimilation, enabling it to excrete acetate continuously. We show that overflow metabolism and the acetate switch contribute to prey-predator interactions. Importance Bacteria in the environment, including Vibrio spp., interact with protozoan predators. To defend against predation, bacteria evolve anti-predator mechanisms ranging from changing morphology, biofilm formation and secretion of toxins or virulence factors. Some of these adaptations may result in strains that are pathogenic to humans. Therefore, it is important to study predator defence strategies of environmental bacteria. V. vulnificus thrives in coastal waters and infects humans. Very little is know about the defence mechanisms V. vulnificus expresses against predation. Here we show that a V. vulnificus strain (ENV1) has rewired the central carbon metabolism enabling the production of excess organic acid that is toxic to the protozoan predator, T. pyriformis . This is a previously unknown mechanism of predation defence that protects against protozoan predators.


2021 ◽  
Vol 12 ◽  
Author(s):  
José de Jesús González-Sánchez ◽  
Itzel Santiago-Sandoval ◽  
José Antonio Lara-González ◽  
Joel Colchado-López ◽  
Cristian R. Cervantes ◽  
...  

Genetic mechanisms controlling root development are well-understood in plant model species, and emerging frontier research is currently dissecting how some of these mechanisms control root development in cacti. Here we show the patterns of root architecture development in a gradient of divergent lineages, from populations to species in Mammillaria. First, we show the patterns of variation in natural variants of the species Mammillaria haageana. Then we compare this variation to closely related species within the Series Supertexta in Mammillaria (diverging for the last 2.1 million years) in which M. haageana is inserted. Finally, we compared these patterns of variation to what is found in a set of Mammillaria species belonging to different Series (diverging for the last 8 million years). When plants were grown in controlled environments, we found that the variation in root architecture observed at the intra-specific level, partially recapitulates the variation observed at the inter-specific level. These phenotypic outcomes at different evolutionary time-scales can be interpreted as macroevolution being the cumulative outcome of microevolutionary phenotypic divergence, such as the one observed in Mammillaria accessions and species.


2021 ◽  
Vol 17 (9) ◽  
pp. e1008691
Author(s):  
Jiayin Hong ◽  
Julius Palme ◽  
Bo Hua ◽  
Michael Springer

Quantitative traits are measurable phenotypes that show continuous variation over a wide phenotypic range. Enormous effort has recently been put into determining the genetic influences on a variety of quantitative traits with mixed success. We identified a quantitative trait in a tractable model system, the GAL pathway in yeast, which controls the uptake and metabolism of the sugar galactose. GAL pathway activation depends both on galactose concentration and on the concentrations of competing, preferred sugars such as glucose. Natural yeast isolates show substantial variation in the behavior of the pathway. All studied yeast strains exhibit bimodal responses relative to external galactose concentration, i.e. a set of galactose concentrations existed at which both GAL-induced and GAL-repressed subpopulations were observed. However, these concentrations differed in different strains. We built a mechanistic model of the GAL pathway and identified parameters that are plausible candidates for capturing the phenotypic features of a set of strains including standard lab strains, natural variants, and mutants. In silico perturbation of these parameters identified variation in the intracellular galactose sensor, Gal3p, the negative feedback node within the GAL regulatory network, Gal80p, and the hexose transporters, HXT, as the main sources of the bimodal range variation. We were able to switch the phenotype of individual yeast strains in silico by tuning parameters related to these three elements. Determining the basis for these behavioral differences may give insight into how the GAL pathway processes information, and into the evolution of nutrient metabolism preferences in different strains. More generally, our method of identifying the key parameters that explain phenotypic variation in this system should be generally applicable to other quantitative traits.


2021 ◽  
Vol 22 (16) ◽  
pp. 9085
Author(s):  
Rafał Hołubowicz ◽  
Andrzej Ożyhar ◽  
Piotr Dobryszycki

Otolin-1 is a scaffold protein of otoliths and otoconia, calcium carbonate biominerals from the inner ear. It contains a gC1q domain responsible for trimerization and binding of Ca2+. Knowledge of a structure–function relationship of gC1q domain of otolin-1 is crucial for understanding the biology of balance sensing. Here, we show how natural variants alter the structure of gC1q otolin-1 and how Ca2+ are able to revert some effects of the mutations. We discovered that natural substitutions: R339S, R342W and R402P negatively affect the stability of apo-gC1q otolin-1, and that Q426R has a stabilizing effect. In the presence of Ca2+, R342W and Q426R were stabilized at higher Ca2+ concentrations than the wild-type form, and R402P was completely insensitive to Ca2+. The mutations affected the self-association of gC1q otolin-1 by inducing detrimental aggregation (R342W) or disabling the trimerization (R402P) of the protein. Our results indicate that the natural variants of gC1q otolin-1 may have a potential to cause pathological changes in otoconia and otoconial membrane, which could affect sensing of balance and increase the probability of occurrence of benign paroxysmal positional vertigo (BPPV).


2021 ◽  
Vol 118 (36) ◽  
pp. e2103154118 ◽  
Author(s):  
Emanuele Andreano ◽  
Giulia Piccini ◽  
Danilo Licastro ◽  
Lorenzo Casalino ◽  
Nicole V. Johnson ◽  
...  

To investigate the evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the immune population, we coincupi bated the authentic virus with a highly neutralizing plasma from a COVID-19 convalescent patient. The plasma fully neutralized the virus for seven passages, but, after 45 d, the deletion of F140 in the spike N-terminal domain (NTD) N3 loop led to partial breakthrough. At day 73, an E484K substitution in the receptor-binding domain (RBD) occurred, followed, at day 80, by an insertion in the NTD N5 loop containing a new glycan sequon, which generated a variant completely resistant to plasma neutralization. Computational modeling predicts that the deletion and insertion in loops N3 and N5 prevent binding of neutralizing antibodies. The recent emergence in the United Kingdom, South Africa, Brazil, and Japan of natural variants with similar changes suggests that SARS-CoV-2 has the potential to escape an effective immune response and that vaccines and antibodies able to control emerging variants should be developed.


Sign in / Sign up

Export Citation Format

Share Document