succinct data structure
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 3)

H-INDEX

2
(FIVE YEARS 0)

Algorithmica ◽  
2021 ◽  
Author(s):  
José Fuentes-Sepúlveda ◽  
Diego Seco ◽  
Raquel Viaña

AbstractWe consider the problem of designing a succinct data structure for representing the connectivity of planar triangulations. The main result is a new succinct encoding achieving the information-theory optimal bound of 3.24 bits per vertex, while allowing efficient navigation. Our representation is based on the bijection of Poulalhon and Schaeffer (Algorithmica, 46(3):505–527, 2006) that defines a mapping between planar triangulations and a special class of spanning trees, called PS-trees. The proposed solution differs from previous approaches in that operations in planar triangulations are reduced to operations in particular parentheses sequences encoding PS-trees. Existing methods to handle balanced parentheses sequences have to be combined and extended to operate on such specific sequences, essentially for retrieving matching elements. The new encoding supports extracting the d neighbors of a query vertex in O(d) time and testing adjacency between two vertices in O(1) time. Additionally, we provide an implementation of our proposed data structure. In the experimental evaluation, our representation reaches up to 7.35 bits per vertex, improving the space usage of state-of-the-art implementations for planar embeddings.


2020 ◽  
Vol 12 (9) ◽  
pp. 158
Author(s):  
Federica Ventruto ◽  
Marco Pulimeno ◽  
Massimo Cafaro ◽  
Italo Epicoco

A stream can be thought of as a very large set of data, sometimes even infinite, which arrives sequentially and must be processed without the possibility of being stored. In fact, the memory available to the algorithm is limited and it is not possible to store the whole stream of data which is instead scanned upon arrival and summarized through a succinct data structure in order to maintain only the information of interest. Two of the main tasks related to data stream processing are frequency estimation and heavy hitter detection. The frequency estimation problem requires estimating the frequency of each item, that is the number of times or the weight with which each appears in the stream, while heavy hitter detection means the detection of all those items with a frequency higher than a fixed threshold. In this work we design and analyze ACMSS, an algorithm for frequency estimation and heavy hitter detection, and compare it against the state of the art ASketch algorithm. We show that, given the same budgeted amount of memory, for the task of frequency estimation our algorithm outperforms ASketch with regard to accuracy. Furthermore, we show that, under the assumptions stated by its authors, ASketch may not be able to report all of the heavy hitters whilst ACMSS will provide with high probability the full list of heavy hitters.


Algorithms ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 128 ◽  
Author(s):  
Shuhei Denzumi ◽  
Jun Kawahara ◽  
Koji Tsuda ◽  
Hiroki Arimura ◽  
Shin-ichi Minato ◽  
...  

In this article, we propose a succinct data structure of zero-suppressed binary decision diagrams (ZDDs). A ZDD represents sets of combinations efficiently and we can perform various set operations on the ZDD without explicitly extracting combinations. Thanks to these features, ZDDs have been applied to web information retrieval, information integration, and data mining. However, to support rich manipulation of sets of combinations and update ZDDs in the future, ZDDs need too much space, which means that there is still room to be compressed. The paper introduces a new succinct data structure, called DenseZDD, for further compressing a ZDD when we do not need to conduct set operations on the ZDD but want to examine whether a given set is included in the family represented by the ZDD, and count the number of elements in the family. We also propose a hybrid method, which combines DenseZDDs with ordinary ZDDs. By numerical experiments, we show that the sizes of our data structures are three times smaller than those of ordinary ZDDs, and membership operations and random sampling on DenseZDDs are about ten times and three times faster than those on ordinary ZDDs for some datasets, respectively.


2018 ◽  
Author(s):  
Yohei M. Rosen ◽  
Benedict J. Paten

AbstractHidden Markov models of haplotype inheritance such as the Li and Stephens model allow for computationally tractable probability calculations using the forward algorithms as long as the representative reference panel used in the model is sufficiently small. Specifically, the monoploid Li and Stephens model and its variants are linear in reference panel size unless heuristic approximations are used. However, sequencing projects numbering in the thousands to hundreds of thousands of individuals are underway, and others numbering in the millions are anticipated.To make the Li and Stephens forward algorithm for these datasets computationally tractable, we have created a numerically exact version of the algorithm with observed average case 𝒪(nk0.35) runtime, avoiding any tradeoff between runtime and model complexity. We demonstrate that our approach also provides a succinct data structure for general purpose haplotype data storage. We discuss generalizations of our algorithmic techniques to other hidden Markov models.2012 ACM Subject ClassificationTheory of computation ⟶ Streaming, sublinear and near linear time algorithms; Applied computing ⟶ BioinformaticsSupplement Materialhttps://github.com/yoheirosen/sublinear-Li-Stephens.FundingThis work was supported by the National Human Genome Research Institute of the National Institutes of Health under Award Number 5U54HG007990, the National Heart, Lung, and Blood Institute of the National Institutes of Health under Award Number 1U01HL137183-01, and grants from the W.M. Keck foundation and the Simons Foundation.AcknowledgementsWe would like to thank Jordan Eizenga for his helpful discussions throughout the development of this work.


2017 ◽  
Author(s):  
Harun Mustafa ◽  
André Kahles ◽  
Mikhail Karasikov ◽  
Gunnar Rätsch

AbstractMuch of the DNA and RNA sequencing data available is in the form of high-throughput sequencing (HTS) reads and is currently unindexed by established sequence search databases. Recent succinct data structures for indexing both reference sequences and HTS data, along with associated metadata, have been based on either hashing or graph models, but many of these structures are static in nature, and thus, not well-suited as backends for dynamic databases.We propose a parallel construction method for and novel application of the wavelet trie as a dynamic data structure for compressing and indexing graph metadata. By developing an algorithm for merging wavelet tries, we are able to construct large tries in parallel by merging smaller tries constructed concurrently from batches of data.When compared against general compression algorithms and those developed specifically for graph colors (VARI and Rainbowfish), our method achieves compression ratios superior to gzip and VARI, converging to compression ratios of 6.5% to 2% on data sets constructed from over 600 virus genomes.While marginally worse than compression by bzip2 or Rainbowfish, this structure allows for both fast extension and query. We also found that additionally encoding graph topology metadata improved compression ratios, particularly on data sets consisting of several mutually-exclusive reference genomes.It was also observed that the compression ratio of wavelet tries grew sublinearly with the density of the annotation matrices.This work is a significant step towards implementing a dynamic data structure for indexing large annotated sequence data sets that supports fast query and update operations. At the time of writing, no established standard tool has filled this niche.


2017 ◽  
Vol 43 ◽  
pp. 38-53 ◽  
Author(s):  
Sandra Alvarez-Garcia ◽  
Guillermo de Bernardo ◽  
Nieves R. Brisaboa ◽  
Gonzalo Navarro

2016 ◽  
Author(s):  
Bahar Alipanahi ◽  
Leena Salmela ◽  
Simon J. Puglisi ◽  
Martin Muggli ◽  
Christina Boucher

AbstractPacific Biosciences (PacBio), the main third generation sequencing technology can produce scalable, high-throughput, unprecedented sequencing results through long reads with uniform coverage. Although these long reads have been shown to increase the quality of draft genomes in repetitive regions, fundamental computational challenges remain in overcoming their high error rate and assembling them efficiently. In this paper we show that the de Bruijn graph built on the long reads can be efficiently and substantially disentangled using optical mapping data as auxiliary information. Fundamental to our approach is the use of the positional de Bruijn graph and a succinct data structure for constructing and traversing this graph. Our experimental results show that over 97.7% of directed cycles have been removed from the resulting positional de Bruijn graph as compared to its non-positional counterpart. Our results thus indicate that disentangling the de Bruijn graph using positional information is a promising direction for developing a simple and efficient assembly algorithm for long reads.


Sign in / Sign up

Export Citation Format

Share Document