weddell sea anomaly
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 6)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Jing Liu ◽  
Donghe Zhang ◽  
Larisa Goncharenko ◽  
Shun-Rong Zhang ◽  
Maosheng He ◽  
...  

<p>During Sudden Stratospheric Warming events, the ionosphere exhibits phase-shifted semi-diurnal perturbations, which are typically attributed to vertical coupling associated with the semi-diurnal lunar tide (M2). Our understanding of ionospheric responses to M2 is limited. This study focuses on fundamental vertical coupling processes associated with the latitudinal extent and hemispheric asymmetry of ionospheric M2 signatures, using total electron content data from the eastern Asian and American sectors. Our results illustrate that the asymmetry maximizes at around 15°N and 20°S magnetic latitudes. In the southern hemisphere, the M2-like signatures extend deep into midlatitude and, in the American sector, encounter the Weddell Sea Anomaly. The M2 amplitude is larger in the northern hemisphere and such asymmetry is more distinct in the eastern Asian sector. The hemispheric asymmetry of M2 signatures in the low latitude can be primarily explained by the trans-equatorial wind modulation of the equatorial plasma fountain. Other physical processes could also be relevant, including hemispheric asymmetry of the M2 below the F region, the ambient thermospheric composition and ionospheric plasma distribution, and the geomagnetic field configuration.</p>


2021 ◽  
pp. 47-55
Author(s):  
A. Zalizovski ◽  
◽  
I. Stanislawska ◽  
V. Lisachenko ◽  
O. Charkina ◽  
...  

Ionospheric Weddell Sea anomaly is an inversion of diurnal variation of the electron density in the ionosphere over Antarctic Peninsula, Weddell Sea, and neighbor territories observed during Antarctic summer. This paper aims at analyzing the reaction of the ionosphere during the Weddell Sea anomaly to changes in solar and geomagnetic activity as deduced from the data of vertical sounding of the ionosphere conducted at the Akademik Vernadsky station. The aim is achieved by comparing the monthly median values of the critical frequencies of the ionosphere (foF2) during Weddell Sea anomaly for the years of high and low solar activity; as well as by comparison of median December height-time diagrams (HT-diagrams) of foF2 calculated separately for the time intervals characterized by low or high levels of F10.7 and K indices for the period from 2007 till 2016. It was experimentally demonstrated that the Weddell Sea anomaly depends on the levels of solar ultraviolet flux and local K indices. The biggest nighttime maximum of ionization corresponds to low K indices and high values of F10.7. The most accurate inversion of diurnal variation of electron density in the F region is observed under the low values of K index and low F10.7 flux. The growth of geomagnetic activity decreases the nighttime ionization under both low and high levels of F10.7 fluxes and leads to a blur of the night maximum. Visible virtual heights of maximums increase together with F10.7 independently of the K index level. Blurring of the night maximum can be explained by destruction of the field of thermospheric winds supporting the nighttime anomaly, and/or by increasing role of plasma drifts in comparison with wind impact. The growth of visible virtual height of the nighttime maximum with increasing solar F10.7 flux could be explained by the gain of equatorward thermospheric wind with increasing solar ultraviolet flux that leads to growth of plasma upwelling effect. The Doppler frequency shift of the signals reflected from the ionosphere during nighttime in presence of the Weddell Sea anomaly is close to zero which could be explained by a stable F2 layer formed as a result of dynamic equilibrium between photochemical processes and upward plasma transport.


2020 ◽  
Author(s):  
Tsung-Che Tsai ◽  
Hau-Kun Jhuang ◽  
Lou-Chuang Lee ◽  
Yi-Ying Ho

<p>The total electron content (TEC) data from Global Ionosphere Maps provide a global TEC map in the region between latitude 87.5°S to 87.5°N, and longitude 180°W to 180°E. The TEC data in geographic coordinates are first transformed into geomagnetic coordinates through Altitude-Adjusted Corrected Geomagnetic Model (AACGM). We then use 2-dimensional (longitudinal, 180°W-180°E and time, 10 days) Fourier transform (FT) of TEC variations along different geomagnetic latitude to obtain all wave modes in both UT (universal time) and LT (local time) frames for the period from November 18, 2002 to October 15, 2014. The summation of contributing wave modes at a given local time provides the longitudinal variation of the associated zonal waves. The phases of wave modes lead to a constructive or destructive interference of contributing zonal wave, which gives different structures at different local time. These local time structures include Weddell Sea Anomaly (WSA), Southern Atlantic Anomaly (SAA), and Four-peaked structure. The dependence of the peaked structures on latitudinal, seasonal, and solar activity is studied.</p>


2019 ◽  
Vol 11 (22) ◽  
pp. 2686 ◽  
Author(s):  
Weihua Bai ◽  
Guangyuan Tan ◽  
Yueqiang Sun ◽  
Junming Xia ◽  
Cheng Cheng ◽  
...  

With the accumulation of the ionospheric radio occultation (IRO) data observed by Global Navigation Satellite System (GNSS) occultation sounder (GNOS) onboard FengYun-3C (FY3C) satellite, it is possible to use GNOS IRO data for ionospheric climatology research. Therefore, this work aims to validate the feasibility of FY3C/GNOS IRO products in climatology research by comparison with that of Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC), laying the foundation for its application in climatology study. Since previous verification works of FY3C/GNOS were done by comparison with ionosondes, this work matched NmF2/hmF2 of FY3C/GNOS and COSMIC into data pairs to verify the profile-level accuracy of FY3C/GNOS IRO data. The statistical results show that the overall correlation coefficients of both NmF2 and hmF2 are above 0.9, the overall bias and std of NmF2 differences between FY3C/GNOS and COSMIC are −2.19% and 17.48%, respectively, and the bias and std of hmF2 differences are −3.29 and 18.01 km, respectively, indicating a high profile-level precision consistency between FY3C/GNOS and COSMIC. In ionospheric climatology comparison, we divided NmF2/hmF2 of FY3C/GNOS into four seasons, then presented the season median NmF2/hmF2 in 5° × 10° grids and compared them with that of COSMIC. The results show that the ionospheric climatological characteristics of FY3C/GNOS and COSMIC are highly matched, both showing the typical climatological features such as equatorial ionosphere anomaly (EIA), winter anomaly, semiannual anomaly, Weddell Sea anomaly (WSA) and so on, though minor discrepancies do exist like the differences in magnitude of longitude peak structures and WSA, which verifies the reliability of FY3C/GNOS IRO products in ionospheric climatology research.


2017 ◽  
Vol 122 (6) ◽  
pp. 6562-6583 ◽  
Author(s):  
P. G. Richards ◽  
R. R. Meier ◽  
Shih‐Ping Chen ◽  
D. P. Drob ◽  
P. Dandenault

2015 ◽  
Vol 120 (2) ◽  
pp. 1325-1340 ◽  
Author(s):  
Loren C. Chang ◽  
Huixin Liu ◽  
Yasunobu Miyoshi ◽  
Chia-Hung Chen ◽  
Fu-Yuan Chang ◽  
...  

2013 ◽  
Vol 31 (10) ◽  
pp. 1699-1708 ◽  
Author(s):  
X. Luan ◽  
X. Dou

Abstract. It has been indicated that the observed Weddell Sea anomaly (WSA) appeared to be an extreme manifestation of the longitudinal variations in the Southern Hemisphere, since the WSA is characterized by greater evening electron density than the daytime density in the region near the Weddell Sea. In the present study, the longitudinal variations of the nighttime F2-layer peak electron density at southern midlatitudes are analyzed using the observations of the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) satellites between 2006 and 2008. It is found that significant longitudinal difference (> 150%) relative to the minimum density at each local time prevails in all seasons, although the WSA phenomenon is only evident in summer under this solar minimum condition. Another interesting feature is that in summer, the maximum longitudinal differences occur around midnight (~ 23:00–00:00 LT) rather than in the evening (19:00–21:00 LT) in the evening, when the most prominent electron density enhancement occurs for the WSA phenomenon. Thus the seasonal–local time patterns of the electron density longitudinal variations during nighttime at southern midlatitudes cannot be simply explained in terms of the WSA. Meanwhile, the variations of the geomagnetic configuration and the equivalent magnetic meridional winds/upward plasma drifts are analyzed to explore their contributions to the longitudinal variations of the nighttime electron density. The maximum longitudinal differences are associated with the strongest wind-induced vertical plasma drifts after 21:00 LT in the Western Hemisphere. Besides the magnetic declination–zonal wind effects, the geographic meridional winds and the magnetic inclination also have significant effects on the upward plasma drifts and the resultant electron density.


Sign in / Sign up

Export Citation Format

Share Document