scholarly journals Evaluating the rate of total electron content (TEC) production in ionosphere F2-layer to highlight winter anomaly by running thermosphere-Ionosphere-electrodynamics general circulation model

2021 ◽  
Vol 15 (9) ◽  
pp. 379-383
Author(s):  
Nanéma Emmanuel ◽  
Konaté Moustapha ◽  
Zoundi Christian ◽  
Ousseini Kotia Amadou ◽  
Louis Zerbo Jean ◽  
...  
2016 ◽  
Vol 34 (12) ◽  
pp. 1109-1117 ◽  
Author(s):  
Elsayed R. Talaat ◽  
Xun Zhu

Abstract. Eleven years of global total electron content (TEC) data derived from the assimilated thermosphere–ionosphere electrodynamics general circulation model are analyzed using empirical orthogonal function (EOF) decomposition and the corresponding principal component analysis (PCA) technique. For the daily averaged TEC field, the first EOF explains more than 89 % and the first four EOFs explain more than 98 % of the total variance of the TEC field, indicating an effective data compression and clear separation of different physical processes. The effectiveness of the PCA technique for TEC is nearly insensitive to the horizontal resolution and the length of the data records. When the PCA is applied to global TEC including local-time variations, the rich spatial and temporal variations of field can be represented by the first three EOFs that explain 88 % of the total variance. The spectral analysis of the time series of the EOF coefficients reveals how different mechanisms such as solar flux variation, change in the orbital declination, nonlinear mode coupling and geomagnetic activity are separated and expressed in different EOFs. This work demonstrates the usefulness of using the PCA technique to assimilate and monitor the global TEC field.


2019 ◽  
Vol 13 (5) ◽  
pp. 884-891
Author(s):  
M. V. Klimenko ◽  
V. V. Klimenko ◽  
I. E. Zakharenkova ◽  
K. G. Ratovsky ◽  
A. S. Yasyukevich ◽  
...  

2019 ◽  
Vol 9 ◽  
pp. A30 ◽  
Author(s):  
Sean Elvidge ◽  
Matthew J. Angling

The Advanced Ensemble electron density (Ne) Assimilation System (AENeAS) is a new data assimilation model of the ionosphere/thermosphere. The background model is provided by the Thermosphere Ionosphere Electrodynamics General Circulation Model (TIE-GCM) and the assimilation uses the local ensemble transform Kalman filter (LETKF). An outline derivation of the LETKF is provided and the equations are presented in a form analogous to the classic Kalman filter. An enhancement to the efficient LETKF implementation to reduce computational cost is also described. In a 3 day test in June 2017, AENeAS exhibits a total electron content (TEC) RMS error of 2.1 TECU compared with 5.5 TECU for NeQuick and 6.8 for TIE-GCM (with an NeQuick topside).


2007 ◽  
Vol 25 (12) ◽  
pp. 2513-2527 ◽  
Author(s):  
B. Zhao ◽  
W. Wan ◽  
L. Liu ◽  
T. Mao ◽  
Z. Ren ◽  
...  

Abstract. In the present work we use the NASA-JPL global ionospheric maps of total electron content (TEC), firstly to construct TEC maps (TEC vs. magnetic local time MLT, and magnetic latitude MLAT) in the interval from 1999 to 2005. These TEC maps were, in turn, used to estimate the annual-to-mean amplitude ratio, A1, and the semiannual-to-mean amplitude ratio, A2, as well as the latitudinal symmetrical and asymmetrical parts, A' and A" of A1. Thus, we investigated in detail the TEC climatology from maps of these indices, with an emphasis on the quantitative presentation for local time and latitudinal changes in the seasonal, annual and semiannual anomalies of the ionospheric TEC. Then we took the TEC value at 14:00 LT to examine various anomalies at a global scale following the same procedure. Results reveal similar features appearing in NmF2, such as that the seasonal anomaly is more significant in the near-pole regions than in the far-pole regions and the reverse is true for the semiannual anomaly; the winter anomaly has least a chance to be observed at the South America and South Pacific areas. The most impressive feature is that the equinoctial asymmetry is most prominent at the East Asian and South Australian areas. Through the analysis of the TIMED GUVI columnar [O/N2] data, we have investigated to what extent the seasonal, annual and semiannual variations can be explained by their counterparts in [O/N2]. Results revealed that the [O/N2] variation is a major contributor to the daytime winter anomaly of TEC, and it also contributes to some of the semiannual and annual anomalies. The contribution to the anomalies unexplained by the [O/N2] data could possibly be due to the dynamics associated with thermospheric winds and electric fields.


2021 ◽  
Author(s):  
Ji Luo ◽  
Jiyao Xu ◽  
Kun Wu ◽  
Wenbin Wang ◽  
Chao Xiong ◽  
...  

<p>The event reports a special case of the propagation and morphology of medium scale travelling ionospheric disturbances (MSTIDs) over middle–latitude China. The MSTIDs were simultaneously observed by the all-sky imager, Swarm satellite, as well as the total electron content (TEC) from global positioning system (GPS). In addition, the MSTIDs lasted for about 6 hours of the field view of airglow imager, the continuous imagers show that the inclination angles of phase fronts were decreasing gradually during the propagation process, resulting in the propagation direction changed from southwestward to nearly westward. More interestingly, the MSTIDs began to dissipate in the airglow observation when they propagated to lower latitudes with the MSTIDs at higher latitudes still visible in the later times. The simulation results from the Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIEGCM) and the Fabry-Perot Interferometer (FPI) wind observations suggest that the variations of background neutral winds and the ionospheric density might play important roles in the changes of propagation direction and the dissipation of MSTIDs.</p>


2013 ◽  
Vol 56 (2) ◽  
Author(s):  
Emília Correia ◽  
Amanda Junqueira Paz ◽  
Mauricio A. Gende

<p>The vertical total electron content (VTEC) obtained from 2004 to 2011 at Comandante Ferraz Brazilian Antarctic Station (62.1°S, 58.4°W) is analyzed to study the mean diurnal, seasonal and annual variations. The maximum daytime VTEC had an annual variation that decreased from 2004 to 2008, and then starting to increase in 2009, which followed the variation of the solar activity. The daily VTEC shows good linear correlation with solar radiation intensity, which is also dependent on the solar zenithal angle. The mean diurnal VTEC shows a semiannual variation, with larger peaks in equinoxes for all years; no winter anomaly was observed, and in summer, there was no clear diurnal variation. The semiannual variation of the VTEC is also modulated by solar activity, with larger VTEC peaks when the solar activity was higher.</p>


Sign in / Sign up

Export Citation Format

Share Document