longitudinal sector
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 11)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
Vol 7 (3) ◽  
pp. 57-71
Author(s):  
Nina Zolotukhina ◽  
Nelya Polekh ◽  
Aleksandr Mikhalev ◽  
Aleksandr Beletsky ◽  
Stepan Podlesny

Peculiarities of 557.7 and 630.0 nm emissions observed in the second step of the magnetic storm main phase at the mid-latitude observatory Tory (52° N, 103° E) on March 17, 2015 are compared with the changes in ionospheric parameters above this station, detected from ionospheric sounding data and total electron content maps. We have found that the intensity of the 557.7 and 630.0 nm emissions noticeably increased after the observatory entered into the longitudinal sector of the developed main ionospheric trough (MIT). The most powerful synchronous increases in intensities of the two emissions are associated with amplification of the westward electrojet during strengthening of the magnetospheric convection. We study the dependence of the ratios between the intensities of 630.0 nm emission recorded in the north, zenith, and south directions on the position of emitting regions relative to the MIT bottom. The SAR arc is shown to appear initially near the bottom of the MIT polar wall and approach the zenith of the station during registration of F3s reflections by an ionosonde, which indicate the presence of a polarization jet near the observation point.


2021 ◽  
pp. 53-67
Author(s):  
Nina Zolotukhina ◽  
Nelya Polekh ◽  
Aleksandr Mikhalev ◽  
Aleksandr Beletsky ◽  
Stepan Podlesny

Peculiarities of 557.7 and 630.0 nm emissions observed in the second step of the magnetic storm main phase at the mid-latitude observatory Tory (52° N, 103° E) on March 17, 2015 are compared with the changes in ionospheric parameters above this station, detected from ionospheric sounding data and total electron content maps. We have found that the intensity of the 557.7 and 630.0 nm emissions noticeably increased after the observatory entered into the longitudinal sector of the developed main ionospheric trough (MIT). The most powerful synchronous increases in intensities of the two emissions are associated with amplification of the westward electrojet during strengthening of the magnetospheric convection. We study the dependence of the ratios between the intensities of 630.0 nm emission recorded in the north, zenith, and south directions on the position of emitting regions relative to the MIT bottom. The SAR arc is shown to appear initially near the bottom of the MIT polar wall and approach the zenith of the station during registration of F3s reflections by an ionosonde, which indicate the presence of a polarization jet near the observation point.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Sergii V. Panasenko ◽  
Dmytro V. Kotov ◽  
Yuichi Otsuka ◽  
Mamoru Yamamoto ◽  
Hiroyuki Hashiguchi ◽  
...  

AbstractThis paper presents the results of a coordinated measurement campaign with ground based and satellite observations over European and Japanese regions during September 5–6, 2017. Two incoherent scatter radars, two satellite missions, International Reference Ionosphere (IRI-2016) empirical model, and Field Line Interhemispheric Plasma (FLIP) physical model were employed to examine the regular behavior of the F2-layer peak height and density and the topside ionosphere electron density, electron, and ion temperatures as well as traveling ionospheric disturbances (TIDs). The daily ionospheric variations over Kharkiv and Shigaraki exhibited similar behavior qualitatively and quantitatively. The results show that none of the empirical IRI-2016 models of F2-layer peak height, topside electron density, and temperature can be preferred for predicting the key qualitative features of variations in ionospheric plasma parameters over Kharkiv and Shigaraki. The likely reason is rapid day to day changes in solar activity and series of moderate enhancements of magnetic activity occurring in the observation period and preceding days. Compared with IRI-2016 model, the FLIP physical model was shown to provide the best agreement with the observations when constrained to follow the observed diurnal variations of F2-layer peak height both over Europe and Japan. This paper presents the first direct comparison of the mid-latitude electron density measured by the Swarm satellite with incoherent scatter radar data and it confirms the high quality of the space-borne data. For the first time, evidence of the possible need to increase the neutral hydrogen density in NRLMSISE-00 model by at least a factor of 2 was obtained for the Asian longitudinal sector. The TIDs, which have predominant periods of about 50 min over Europe and 80 min over Japan, were detected, likely caused by passage of the solar terminator. Such a difference in the periods could indicate regional features and is the topic for further research.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 164
Author(s):  
Maria A. Sergeeva ◽  
Olga A. Maltseva ◽  
Ramon Caraballo ◽  
Juan Americo Gonzalez-Esparza ◽  
Pedro Corona-Romero

The changes in the ionosphere during geomagnetic disturbances is one of the prominent Space Weather effects on the near-Earth environment. The character of these changes can differ significantly at different regions on the Earth. We studied ionospheric response to five geomagnetic storms of March 2012, using data of Total Electron Content (TEC) and F2-layer critical frequency (foF2) along the meridian of 70° W in the Northern Hemisphere. There are few ionosondes along this longitudinal sector: in Thule, Sondrestrom, Millstone Hill and Puerto Rico. The lacking foF2 values between the ionosondes were determined by using the experimental latitudinal dependences of the equivalent ionospheric slab thickness and TEC values. During geomagnetic storms, the following features were characteristic: (a) two-hours (or longer in one case) delay of the ionospheric response to disturbances, (b) the more prominent mid-latitude trough and (c) the sharper border of the EIA northern crest. During four storms of 7–17 March, the general tendency was the transition from negative disturbances at high latitudes to intense positive disturbances at low latitudes. During the fifth storm, the negative ionospheric disturbance controlled by O/N2 change was masked by the overall prolonged electron density increase during 21–31 March. The multiple correlation analysis revealed the latitudinal dependence of dominant Space Weather parameters’ impacts on foF2.


2020 ◽  
Vol 66 (4) ◽  
pp. 895-910 ◽  
Author(s):  
Sumanjit Chakraborty ◽  
Abhirup Datta ◽  
Sarbani Ray ◽  
Deepthi Ayyagari ◽  
Ashik Paul

2020 ◽  
Vol 1 (1) ◽  
pp. 111-125
Author(s):  
Volkmar Wirth

Abstract. Ray paths of stationary Rossby waves emanating from a local midlatitude source are usually refracted equatorward. However, this general tendency for equatorward propagation is mitigated by the presence of a midlatitude jet that acts as a zonal waveguide. This opens up the possibility of circum-global teleconnections and quasi-resonance, which suggests that the ability to guide a wave in the zonal direction is an important jet property. This paper investigates waveguidability of idealized midlatitude jets in a barotropic model on the sphere. A forced-dissipative model configuration with a local source for Rossby waves is used in order to quantify waveguidability by diagnosing the latitudinal distribution of waviness in a longitudinal sector far downstream of the forcing. Systematic sensitivity experiments show that waveguidability increases smoothly with increasing jet amplitude and with decreasing jet width. This result is contrasted with the predictions from two idealized theoretical concepts based on (1) ray tracing as derived from Wentzel–Kramers–Brillouin (WKB) theory and (2) a sharp jet with a zonally oriented front of potential vorticity. The existence of two so-called turning latitudes, which is the key diagnostic for a zonal waveguide according to ray tracing theory, turns out to be a poor predictor for the dependence of waveguidability on jet amplitude and jet width obtained in the numerical simulations. By contrast, the meridional gradient of potential vorticity correlates fairly well with the diagnosed waveguidability. The poor predictions from ray tracing are not surprising, because the underlying WKB assumptions are not satisfied in the current context. The failure of WKB is traced back to the properties of the underlying equations, and a heuristic argument is presented to elucidate the potential of the potential vorticity (PV) gradient to act as a proxy for waveguidability.


2020 ◽  
Author(s):  
Volkmar Wirth

<p>Ray paths of stationary Rossby waves emanating from a local mid-latitude source are usually refracted equatorward. However, this general tendency for equatorward propagation is mitigated by the presence of a midlatitude jet which acts as a zonal waveguide. This opens the possibility for circum-global teleconnections and quasi-resonance, which suggests that the ability of a jet to guide a wave in the zonal direction is an important property.</p><p>This paper investigates waveguidability of idealized midlatitude jets in a barotropic model on the sphere. A forced-dissipative model configuration with a local source for Rossby waves is used in order to quantify waveguidability by diagnosing the latitudinal distribution of waviness in a longitudinal sector far downstream of the forcing. Systematic sensitivity experiments show that waveguidability increases smoothly with increasing jet amplitude and with decreasing jet width. This result is contrasted with the predictions from two idealized theoretical concepts based (1) on ray tracing as derived from WKB theory and (2) on a sharp jet with a zonally oriented front of potential vorticity. The existence of two so-called turning latitudes, which is the key diagnostic for a zonal waveguide according to ray tracing theory, turns out to be a poor predictor for the dependence of waveguidability on jet amplitude and jet width obtained in the numerical simulations. By contrast, the meridional gradient of potential vorticity correlates fairly well with the diagnosed waveguidability. The poor prediction from ray tracing is not surprising, because the underlying WKB assumptions are not satisfied in the current context.</p>


2020 ◽  
Author(s):  
Volkmar Wirth

Abstract. Ray paths of stationary Rossby waves emanating from a local mid-latitude source are usually refracted equatorward. However, this general tendency for equatorward propagation is mitigated by the presence of a midlatitude jet which acts as a zonal waveguide. This opens the possibility for circum-global teleconnections and quasi-resonance, which suggests that the ability to guide a wave in the zonal direction is an important jet property. This paper investigates waveguidability of idealized midlatitude jets in a barotropic model on the sphere. A forced-dissipative model configuration with a local source for Rossby waves is used in order to quantify waveguidability by diagnosing the latitudinal distribution of waviness in a longitudinal sector far downstream of the forcing. Systematic sensitivity experiments show that waveguidability increases smoothly with increasing jet amplitude and with decreasing jet width. This result is contrasted with the predictions from two idealized theoretical concepts based on (1) ray tracing as derived from Wenztel-Kramers-Brillouin (short: WKB) theory and (2) a sharp jet with a zonally oriented front of potential vorticity. The existence of two so-called turning latitudes, which is the key diagnostic for a zonal waveguide according to ray tracing theory, turns out to be a poor predictor for the dependence of waveguidability on jet amplitude and jet width obtained in the numerical simulations. By contrast, the meridional gradient of potential vorticity correlates fairly well with the diagnosed waveguidability. The poor predictions from ray tracing are not surprising, because the underlying WKB assumptions are not satisfied in the current context. The failure of WKB is traced back to the properties of the underlying equations, and a heuristic argument is presented to elucidate the potential of the PV gradient to act as a proxy for waveguidability.


2019 ◽  
Vol 69 (5) ◽  
pp. 366-371
Author(s):  
K Coomer ◽  
J Houdmont

Abstract Background Work ability (WA) concerns the capacity to manage job demands in relation to physical and psychological resources. Core self-evaluations (CSE) refer to a composite personality construct comprising self-esteem, locus of control, self-efficacy and emotional stability traits. Studies have shown the independent contribution of WA and CSE to work outcomes, yet none has explored their additive contribution, when applied together, to identify workers at risk of impaired health and performance-related outcomes. Aims The aim was to explore the contribution of WA and CSE to explaining variance in psychological distress and work engagement in a sample of UK manufacturing sector workers. Methods A self-report questionnaire containing validated measures of WA, CSE, psychological distress and work engagement was administered to employees in four UK manufacturing organizations. Bivariate correlations were calculated to identify patterns of relationships between the variables and hierarchical linear regression analyses performed to examine the incremental contribution of WA and CSE to the target variables. Results Analyses were conducted on data contributed by 311 workers (21% response rate). WA accounted for around one-quarter of the variance in psychological distress and around one-fifth of the variance in work engagement. The addition of CSE explained a further 10% (psychological distress) and 7% (work engagement) of the variance. Conclusions These exploratory findings suggest that WA and CSE might be useful in the identification of workers at risk of poor psychological well-being and work effectiveness in UK manufacturing. Longitudinal sector-representative studies are required to establish the constructs’ predictive power.


Sign in / Sign up

Export Citation Format

Share Document