scholarly journals Quasi–invariant Hermite Polynomials and Lassalle–Nekrasov Correspondence

Author(s):  
Misha V. Feigin ◽  
Martin A. Hallnäs ◽  
Alexander P. Veselov

AbstractLassalle and Nekrasov discovered in the 1990s a surprising correspondence between the rational Calogero–Moser system with a harmonic term and its trigonometric version. We present a conceptual explanation of this correspondence using the rational Cherednik algebra and establish its quasi-invariant extension. More specifically, we consider configurations $${\mathcal {A}}$$ A of real hyperplanes with multiplicities admitting the rational Baker–Akhiezer function and use this to introduce a new class of non-symmetric polynomials, which we call $${\mathcal {A}}$$ A -Hermite polynomials. These polynomials form a linear basis in the space of $${\mathcal {A}}$$ A -quasi-invariants, which is an eigenbasis for the corresponding generalised rational Calogero–Moser operator with harmonic term. In the case of the Coxeter configuration of type $$A_N$$ A N this leads to a quasi-invariant version of the Lassalle–Nekrasov correspondence and its higher order analogues.

Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 648
Author(s):  
Ghulam Muhiuddin ◽  
Waseem Ahmad Khan ◽  
Ugur Duran ◽  
Deena Al-Kadi

The purpose of this paper is to construct a unified generating function involving the families of the higher-order hypergeometric Bernoulli polynomials and Lagrange–Hermite polynomials. Using the generating function and their functional equations, we investigate some properties of these polynomials. Moreover, we derive several connected formulas and relations including the Miller–Lee polynomials, the Laguerre polynomials, and the Lagrange Hermite–Miller–Lee polynomials.


Author(s):  
Muhammad Uzair Awan ◽  
Muhammad Zakria Javed ◽  
Michael Th. Rassias ◽  
Muhammad Aslam Noor ◽  
Khalida Inayat Noor

AbstractA new generalized integral identity involving first order differentiable functions is obtained. Using this identity as an auxiliary result, we then obtain some new refinements of Simpson type inequalities using a new class called as strongly (s, m)-convex functions of higher order of $$\sigma >0$$ σ > 0 . We also discuss some interesting applications of the obtained results in the theory of means. In last we present applications of the obtained results in obtaining Simpson-like quadrature formula.


Author(s):  
Merrick Cai ◽  
Daniil Kalinov

In this paper, we study the irreducible quotient [Formula: see text] of the polynomial representation of the rational Cherednik algebra [Formula: see text] of type [Formula: see text] over an algebraically closed field of positive characteristic [Formula: see text] where [Formula: see text]. In the [Formula: see text] case, for all [Formula: see text] we give a complete description of the polynomials in the maximal proper graded submodule [Formula: see text], the kernel of the contravariant form [Formula: see text], and subsequently find the Hilbert series of the irreducible quotient [Formula: see text]. In the [Formula: see text] case, we give a complete description of the polynomials in [Formula: see text] when the characteristic [Formula: see text] and [Formula: see text] is transcendental over [Formula: see text], and compute the Hilbert series of the irreducible quotient [Formula: see text]. In doing so, we prove a conjecture due to Etingof and Rains completely for [Formula: see text], and also for any [Formula: see text] and [Formula: see text]. Furthermore, for [Formula: see text], we prove a simple criterion to determine whether a given polynomial [Formula: see text] lies in [Formula: see text] for all [Formula: see text] with [Formula: see text] and [Formula: see text] fixed.


1994 ◽  
Vol 3 (4) ◽  
pp. 435-454 ◽  
Author(s):  
Neal Brand ◽  
Steve Jackson

In [11] it is shown that the theory of almost all graphs is first-order complete. Furthermore, in [3] a collection of first-order axioms are given from which any first-order property or its negation can be deduced. Here we show that almost all Steinhaus graphs satisfy the axioms of almost all graphs and conclude that a first-order property is true for almost all graphs if and only if it is true for almost all Steinhaus graphs. We also show that certain classes of subgraphs of vertex transitive graphs are first-order complete. Finally, we give a new class of higher-order axioms from which it follows that large subgraphs of specified type exist in almost all graphs.


Author(s):  
Matteo Filippi ◽  
Erasmo Carrera

This work aims at evaluating the capabilities of several higher-order beam formulations for stress and dynamic analyses of layered sandwich structures. The structural models are conceived within the framework of the Carrera Unified Formulation (CUF) that allows one to generate (and compare) an infinite number of displacement fields. The number and the type of functions that are selected to generate the kinematic expansions are input parameters of the problem. Besides the well-known Taylor- and Lagrange-type expansions, great attention is paid to a new class of advanced higher-order zig-zag theories, which are written as combinations of continuous piecewise polynomial functions. Numerical simulations are performed on laminated and sandwich beams with very low length-to-depth ratio values. Also, structures with soft layers made of viscoelastic materials are considered to investigate the different dissipation mechanisms.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Muhammad Uzair Awan ◽  
Sadia Talib ◽  
Muhammad Aslam Noor ◽  
Yu-Ming Chu ◽  
Khalida Inayat Noor

The main objective of this paper is to introduce a new class of preinvex functions which is called as n-polynomial preinvex functions of a higher order. As applications of this class of functions, we discuss several new variants of trapezium-like inequalities. In order to obtain the main results of the paper, we use the concepts and techniques of k-fractional calculus. We also discuss some special cases of the obtained results which show that the main results of the paper are quite unifying one.


Sign in / Sign up

Export Citation Format

Share Document