rectified linear unit
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 37)

H-INDEX

7
(FIVE YEARS 4)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Isin Surekcigil Pesch ◽  
Eva Bestelink ◽  
Olivier de Sagazan ◽  
Adnan Mehonic ◽  
Radu A. Sporea

AbstractArtificial neural networks (ANNs) providing sophisticated, power-efficient classification are finding their way into thin-film electronics. Thin-film technologies require robust, layout-efficient devices with facile manufacturability. Here, we show how the multimodal transistor’s (MMT’s) transfer characteristic, with linear dependence in saturation, replicates the rectified linear unit (ReLU) activation function of convolutional ANNs (CNNs). Using MATLAB, we evaluate CNN performance using systematically distorted ReLU functions, then substitute measured and simulated MMT transfer characteristics as proxies for ReLU. High classification accuracy is maintained, despite large variations in geometrical and electrical parameters, as CNNs use the same activation functions for training and classification.


Author(s):  
Hengjie Chen ◽  
Zhong Li

By applying fundamental mathematical knowledge, this paper proves that the function [Formula: see text] is an integer no less than [Formula: see text] has the property that the difference between the function value of middle point of arbitrarily two adjacent equidistant distribution nodes on [Formula: see text] and the mean of function values of these two nodes is a constant depending only on the number of nodes if and only if [Formula: see text] By them, we establish an important result about deep neural networks that the function [Formula: see text] can be interpolated by a deep Rectified Linear Unit (ReLU) network with depth [Formula: see text] on the equidistant distribution nodes in interval [Formula: see text] and the error of approximation is [Formula: see text] Then based on the main result that has just been proven and the Chebyshev orthogonal polynomials, we construct a deep network and give the error estimate of approximation to polynomials and continuous functions, respectively. In addition, this paper constructs one deep network with local sparse connections, shared weights and activation function [Formula: see text] and discusses its density and complexity.


Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 3130
Author(s):  
Bharathwaj Suresh ◽  
Kamlesh Pillai ◽  
Gurpreet Singh Kalsi ◽  
Avishaii Abuhatzera ◽  
Sreenivas Subramoney

Deep Neural Networks (DNNs) have set state-of-the-art performance numbers in diverse fields of electronics (computer vision, voice recognition), biology, bioinformatics, etc. However, the process of learning (training) from the data and application of the learnt information (inference) process requires huge computational resources. Approximate computing is a common method to reduce computation cost, but it introduces loss in task accuracy, which limits their application. Using an inherent property of Rectified Linear Unit (ReLU), a popular activation function, we propose a mathematical model to perform MAC operation using reduced precision for predicting negative values early. We also propose a method to perform hierarchical computation to achieve the same results as IEEE754 full precision compute. Applying this method on ResNet50 and VGG16 shows that up to 80% of ReLU zeros (which is 50% of all ReLU outputs) can be predicted and detected early by using just 3 out of 23 mantissa bits. This method is equally applicable to other floating-point representations.


Cureus ◽  
2021 ◽  
Author(s):  
Akira Takekawa ◽  
Masayuki Kajiura ◽  
Hiroya Fukuda

Mathematics ◽  
2021 ◽  
Vol 9 (17) ◽  
pp. 2176
Author(s):  
Zhiqi Yan ◽  
Shisheng Zhong ◽  
Lin Lin ◽  
Zhiquan Cui

Engineering data are often highly nonlinear and contain high-frequency noise, so the Levenberg–Marquardt (LM) algorithm may not converge when a neural network optimized by the algorithm is trained with engineering data. In this work, we analyzed the reasons for the LM neural network’s poor convergence commonly associated with the LM algorithm. Specifically, the effects of different activation functions such as Sigmoid, Tanh, Rectified Linear Unit (RELU) and Parametric Rectified Linear Unit (PRLU) were evaluated on the general performance of LM neural networks, and special values of LM neural network parameters were found that could make the LM algorithm converge poorly. We proposed an adaptive LM (AdaLM) algorithm to solve the problem of the LM algorithm. The algorithm coordinates the descent direction and the descent step by the iteration number, which can prevent falling into the local minimum value and avoid the influence of the parameter state of LM neural networks. We compared the AdaLM algorithm with the traditional LM algorithm and its variants in terms of accuracy and speed in the context of testing common datasets and aero-engine data, and the results verified the effectiveness of the AdaLM algorithm.


Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 2004
Author(s):  
Yuna Han ◽  
Byung-Woo Hong

In recent years, convolutional neural networks have been studied in the Fourier domain for a limited environment, where competitive results can be expected for conventional image classification tasks in the spatial domain. We present a novel efficient Fourier convolutional neural network, where a new activation function is used, the additional shift Fourier transformation process is eliminated, and the number of learnable parameters is reduced. First, the Phase Rectified Linear Unit (PhaseReLU) is proposed, which is equivalent to the Rectified Linear Unit (ReLU) in the spatial domain. Second, in the proposed Fourier network, the shift Fourier transform is removed since the process is inessential for training. Lastly, we introduce two ways of reducing the number of weight parameters in the Fourier network. The basic method is to use a three-by-three sized kernel instead of five-by-five in our proposed Fourier convolutional neural network. We use the random kernel in our efficient Fourier convolutional neural network, whose standard deviation of the Gaussian distribution is used as a weight parameter. In other words, since only two scalars for each imaginary and real component per channel are required, a very small number of parameters is applied compressively. Therefore, as a result of experimenting in shallow networks, such as LeNet-3 and LeNet-5, our method achieves competitive accuracy with conventional convolutional neural networks while dramatically reducing the number of parameters. Furthermore, our proposed Fourier network, using a basic three-by-three kernel, mostly performs with higher accuracy than traditional convolutional neural networks in shallow and deep neural networks. Our experiments represent that presented kernel methods have the potential to be applied in all architecture based on convolutional neural networks.


2021 ◽  
Vol 10 (1) ◽  
pp. 383-389
Author(s):  
Wahyudi Setiawan ◽  
Moh. Imam Utoyo ◽  
Riries Rulaningtyas

Convolutional neural network (CNN) is a method of supervised deep learning. The architectures including AlexNet, VGG16, VGG19, ResNet 50, ResNet101, GoogleNet, Inception-V3, Inception ResNet-V2, and Squeezenet that have 25 to 825 layers. This study aims to simplify layers of CNN architectures and increased accuracy for fundus patches classification. Fundus patches classify two categories: normal and neovascularization. Data used for classification is MESSIDOR and Retina Image Bank that have 2,080 patches. Results show the best accuracy of 93.17% for original data and 99,33% for augmentation data using CNN 31 layers. It consists input layer, 7 convolutional layers, 7 batch normalization, 7 rectified linear unit, 6 max-pooling, fully connected layer, softmax, and output layer.


Sign in / Sign up

Export Citation Format

Share Document