tidal hydrodynamics
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 12)

H-INDEX

13
(FIVE YEARS 1)

Author(s):  
R. Balaji ◽  
J. SatheeshKumar ◽  
R. Cornelius ◽  
R. Naveen ◽  
G. Prasantha ◽  
...  

2021 ◽  
pp. 126153
Author(s):  
Ping Zhang ◽  
Qingshu Yang ◽  
Heng Wang ◽  
Huayang Cai ◽  
Feng Liu ◽  
...  
Keyword(s):  

2020 ◽  
Vol 24 (4) ◽  
pp. 1871-1889
Author(s):  
Huayang Cai ◽  
Ping Zhang ◽  
Erwan Garel ◽  
Pascal Matte ◽  
Shuai Hu ◽  
...  

Abstract. Assessing the impacts of both natural (e.g. tidal forcing from the ocean) and human-induced changes (e.g. dredging for navigation and land reclamation) on estuarine morphology is particularly important for the protection and management of the estuarine environment. In this study, a novel analytical approach is proposed for the assessment of estuarine morphological evolution in terms of tidally averaged depth on the basis of the observed water levels along the estuary. The key lies in deriving a relationship between wave celerity and tidal damping or amplification. For given observed water levels at two gauging stations, it is possible to have a first estimation of both wave celerity (distance divided by tidal travelling time) and tidal damping or amplification rate (tidal range difference divided by distance), which can then be used to predict the morphological changes via an inverse analytical model for tidal hydrodynamics. The proposed method is applied to the Lingdingyang Bay of the Pearl River Estuary, located on the southern coast of China, to analyse the historical development of the tidal hydrodynamics and morphological evolution. The analytical results show surprisingly good correspondence with observed water depth and volume in this system. The merit of the proposed method is that it provides a simple approach for understanding the decadal evolution of the estuarine morphology through the use of observed water levels, which are usually available and can be easily measured.


2020 ◽  
Author(s):  
Cai Huayang ◽  
Feng Liu

<p>Assessing the impacts of both natural (e.g., tidal forcing from the ocean) and human-induced changes (e.g., dredging for navigation, land reclamation) on estuarine morphology is particularly important for the protection and management of the estuarine environment. In this study, a novel analytical approach is proposed for the assessment of estuarine morphological evolution in terms of tidally averaged depth on the basis of the observed water levels along the estuary. The key lies in deriving a relationship between wave celerity and tidal damping or amplification. For given observed water levels at two gauging stations, it is possible to have a first estimation of both wave celerity (distance divided by tidal travelling time) and tidal damping or amplification rate (tidal range difference divided by distance), which can then be used to predict the morphological changes via an inverse analytical model for tidal hydrodynamics. The proposed method is applied to the Lingdingyang Bay of the Pearl River Estuary, located on the southern coast of China, to analyse the historical development of the tidal hydrodynamics and morphological evolution. The analytical results show surprisingly good correspondence with observed water depth and volume in this system. The merit of the proposed method is that it provides a simple approach for understanding the decadal evolution of the estuarine morphology through the use of observed water levels, which are usually available and can be easily measured.</p>


2020 ◽  
Author(s):  
Ping Zhang ◽  
Huayang Cai

<p>Understanding the evolution of estuarine hydrodynamics is essential for sustainable water resources management, since they directly link to estuarine environment by regulating the materials transportation (e.g. nutrients, sediments, organisms and pollutants). In this study, an enhanced harmonic analysis model for nonstationary tide (S_TIDE model) was used to extract the amplitudes and phases of two predominant tidal constituents (M<sub>2</sub> and K<sub>1</sub>) in a daily scale in two tidal gauging stations (i.e., Chiwan, Sishengwei) in the Lingdingyang Bay of the Pearl River Delta from 1965 to 2016, with the purpose of exploring the spring-neap change in tidal hydrodynamics (e.g., tidal wave celerity and tidal damping/amplification rate). To understand the stepwise evolution of tidal hydrodynamics, we have divided the whole study period into three distinct periods: the pre-human (e.g., from 1965-1997), transitional (e.g., from 1998-2007) and post-human periods (e.g., from 2008-2016), based on the dynamics of wave celerity. It was shown that the long-term spring-neap change in tidal hydrodynamics was mainly driven by the highly-modified geometry (including deepening and narrowing) in the Lingdingyang Bay. To quantify the effects of estuarine morphological alterations in terms of deepening and narrowing on tidal hydrodynamics, an analytical hydrodynamics model was adopted to assess the spring-neap variations at different periods. The proposed method for evaluating the tidal dynamics owing to morphological changes is particularly useful for providing a theoretical guideline for protecting the estuarian environment in the Lingdingyang Bay and other estuaries that are subject to strong human interventions.</p>


Sign in / Sign up

Export Citation Format

Share Document