microporous polymer
Recently Published Documents


TOTAL DOCUMENTS

475
(FIVE YEARS 196)

H-INDEX

49
(FIVE YEARS 11)

Author(s):  
Samuel Ivko ◽  
Alex Michael James ◽  
Matthew J Derry ◽  
Robert Dawson ◽  
Anthony Haynes

The methanol carbonylation catalyst, cis-[Rh(CO)2I2]–, has been heterogenised within a dispersible microporous polymer support bearing cationic functionality. The microporous polymer has a core-shell structure in which the porous and insoluble...


2021 ◽  
Vol 9 ◽  
Author(s):  
Sabuj Kanti Das ◽  
Sanjib Shyamal ◽  
Manisha Das ◽  
Saptarsi Mondal ◽  
Avik Chowdhury ◽  
...  

The development of an efficient, sustainable, and inexpensive metal-free catalyst for oxygen evolution reaction (OER) via photoelectrochemical water splitting is very demanding for energy conversion processes such as green fuel generators, fuel cells, and metal-air batteries. Herein, we have developed a metal-free pyrene-based nitrogen and sulfur containing conjugated microporous polymer having a high Brunauer-Emmett-Teller surface area (761 m2 g−1) and a low bandgap of 2.09 eV for oxygen evolution reaction (OER) in alkaline solution. The π-conjugated as-synthesized porous organic material (PBTDZ) has been characterized by Fourier transform infrared spectroscopy (FT-IR), solid-state 13C (cross-polarization magic angle spinning-nuclear magnetic resonance) CP-MAS NMR, N2 adsorption/desorption analysis, field-emission scanning electron microscope (FESEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA) experiments. The material acts as an efficient catalyst for photoelectrochemical OER with a current density of 80 mA/cm2 at 0.8 V vs. Ag/AgCl and delivered 104 µmol of oxygen in a 2 h run. The presence of low bandgap energy, π-conjugated conducting polymeric skeleton bearing donor heteroatoms (N and S), and higher specific surface area associated with inherent microporosity are responsible for this admirable photoelectrocatalytic activity of PBTDZ catalyst.


2021 ◽  
Author(s):  
Zhenggong Wang ◽  
Xiaofan Luo ◽  
Kuan Lu ◽  
Shouwen Zhu ◽  
Yanshao Yang ◽  
...  

Abstract Trade-off between permeability and nanometer-level selectivity is an inherent shortcoming of membrane-based separation of molecules, while most highly porous materials with high adsorption capacity lack solution processability and stability for achieving adsorption-based molecule separation. We hereby report a hydrophilic amidoxime modified polymer of intrinsic microporosity (AOPIM-1) as a membrane adsorption material to selectively adsorb and separate small organic molecules from water with ultrahigh processing capacity. The membrane adsorption capacity for Rhodamine B reaches 26.114 g m−2, 10~1000 times higher than previously reported adsorptive membranes. Meanwhile, the membrane achieves >99.9% removal of various nano-sized organic molecules with water flux 2 orders of magnitude higher than typical pressure-driven membranes of similar rejections. This work confirms the feasibility of microporous polymers for membrane adsorption with unprecedented capacity, and provides the possibility of adsorptive membranes for molecular separation.


Polymer ◽  
2021 ◽  
pp. 124439
Author(s):  
Shuzheng Sun ◽  
Congcong Li ◽  
Mingkai Li ◽  
Guoxian Gu ◽  
Yanqin Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document