uniform theory of diffraction
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 9)

H-INDEX

7
(FIVE YEARS 0)

2022 ◽  
Author(s):  
Shulabh Gupta ◽  
Tom J. Smy ◽  
Scott Stewart

A ray optical methodology based on the uniform theory of diffraction is proposed to model electromagnetic field scattering from curved metasurfaces. The problem addressed is the illumination of a purely reflective uniform cylindrical metasurface by a line source, models the surface with susceptibilities and employs a methodology previously used for cylinders coated in thin dielectric layers [1]. The approach is fundamentally based on a representation of the metasurface using the General Sheet Transition Conditions (GSTCs) which characterizes the surface in terms of susceptibility dyadics. An eigenfunction description of the metasurface problem is derived considering both tangential and normal surface susceptibilities, and used to develop a ray optics (RO) description of the scattered fields; including the specular geometrical optical field, surface diffraction described by creeping waves and a transition region over the shadow boundary. The specification of the fields in the transition region is dependent on the evaluation of the Pekeris caret function integral and the method follows [1]. The proposed RO-GSTC model is then successfully demonstrated for a variety of cases and is independently verified using a rigorous eigenfunction solution (EF-GSTC) and full-wave Integral Equation method (IE-GSTC), over the entire domain from the deep lit to deep shadow.


2022 ◽  
Author(s):  
Shulabh Gupta ◽  
Tom J. Smy ◽  
Scott Stewart

A ray optical methodology based on the uniform theory of diffraction is proposed to model electromagnetic field scattering from curved metasurfaces. The problem addressed is the illumination of a purely reflective uniform cylindrical metasurface by a line source, models the surface with susceptibilities and employs a methodology previously used for cylinders coated in thin dielectric layers [1]. The approach is fundamentally based on a representation of the metasurface using the General Sheet Transition Conditions (GSTCs) which characterizes the surface in terms of susceptibility dyadics. An eigenfunction description of the metasurface problem is derived considering both tangential and normal surface susceptibilities, and used to develop a ray optics (RO) description of the scattered fields; including the specular geometrical optical field, surface diffraction described by creeping waves and a transition region over the shadow boundary. The specification of the fields in the transition region is dependent on the evaluation of the Pekeris caret function integral and the method follows [1]. The proposed RO-GSTC model is then successfully demonstrated for a variety of cases and is independently verified using a rigorous eigenfunction solution (EF-GSTC) and full-wave Integral Equation method (IE-GSTC), over the entire domain from the deep lit to deep shadow.


2021 ◽  
Author(s):  
Husnu Deniz Basdemir

Abstract In this study, diffraction of waves by a planar junction between impedance and perfect electromagnetic conductor half-planes is investigated. The method of transition boundary is used for the solution of the problem. The diffracted wave expressions are expressed in terms of the Fresnel functions by using the uniform theory of diffraction method. Thus, finite magnitudes are obtained at the transition regions and the results are analyzed numerically for different set of parameters.


Electronics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 804
Author(s):  
Pedro Pinho ◽  
Hugo Santos ◽  
Henrique Salgado

In this paper, we describe the design of an electrically large anechoic chamber for usage on millimetre-wave bands. Ansys Savant sotware was used to perform a simulation of the chamber, using physical optics coupled with uniform theory of diffraction (PO/UTD). Moreover, a method based on an open waveguide probe is described in this paper to obtain the electrical properties of the RF absorbers at millimetre-wave frequencies. Two different source antennas were simulated in this work and the corresponding quiet zones predicted. The largest quiet zone was 30 m m × 30 m m × 50 m m , for a chamber size of 1.2 m m × 0.6 m m × 0.6 m .


Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 654
Author(s):  
Domingo Pardo-Quiles ◽  
José-Víctor Rodríguez

A uniform theory of diffraction (UTD)-based method for analysis of the multiple diffraction of acoustic waves when considering a series of symmetric obstacles with arbitrary modeling, height and spacing is hereby presented. The method, which makes use of graph theory, funicular polygons and Fresnel ellipsoids, proposes a novel approach by which only the relevant obstacles and paths of the scenario under study are considered, therefore simultaneously providing fast and accurate prediction of sound attenuation. The obstacles can be modeled either as knife edges, wedges, wide barriers or cylinders, with some other polygonal diffracting elements, such as doubly inclined, T- or Y-shaped barriers, also considered. In view of the obtained results, this method shows good agreement with previously published formulations and measurements whilst offering better computational efficiency, thus allowing for the consideration of a large number of obstacles.


Author(s):  
Huayu Fan ◽  
Hao Zhan ◽  
Shixin Cheng ◽  
Baigang Mi

To deal with the problem of aerodynamic and stealth integrated optimization of DSI inlet, a multi-objective optimization study on aerodynamic and stealth of the DSI inlet is carry out which based on the deformation of the three-dimensional compression bump surface. The FFD parametric method is used to parameterize the bump surface; CFD calculation based on RANS equations is used to analyze the aerodynamic performance of the DSI inlet, large element physical optical method and uniform theory of diffraction are used to calculate RCS of the DSI inlet; And ASMOPSO algorithm with the Kriging surrogate model which based on the expect hyper-volume improvement infill criterion is adopted for integrated optimization design. The results of DSI inlet aerodynamic and stealth integrated optimization exhibit considerable improvement.


2019 ◽  
Vol 17 (3) ◽  
pp. 51-58
Author(s):  
Young-Jae Choi ◽  
In-Sik Choi ◽  
Seong-Won Oh ◽  
Yong-Hwan Jung

2019 ◽  
Vol 145 (3) ◽  
pp. 1791-1791
Author(s):  
Caleb B. Goates ◽  
Scott D. Sommerfeldt ◽  
Jonathan Blotter

Sign in / Sign up

Export Citation Format

Share Document