acoustic diffraction
Recently Published Documents


TOTAL DOCUMENTS

154
(FIVE YEARS 8)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Weiye Li ◽  
Urs Alexander Tassilo Hofmann ◽  
Johannes Rebling ◽  
Quanyu Zhou ◽  
Zhenyue Chen ◽  
...  

Abstract Optoacoustic microscopy (OAM) retrieves anatomical and functional contrast in vivo at depths not resolvable with optical microscopy. Recent progress on reconstruction algorithms have further advanced its imaging performance to provide high lateral resolution ultimately limited by acoustic diffraction. In this work, we suggest a new broadband model-based OAM (MB-OAM) framework efficiently exploiting scanning symmetries for an enhanced performance. By capitalizing on the large detection bandwidth of a spherical polyvinylidene difluoride (PVDF) film while accurately accounting for its spatial impulse response, the new approach significantly outperforms standard OAM implementations in terms of contrast and resolution, as validated by functional in vivo experiments in mice and human volunteers. Furthermore, L1-norm regularization enabled resolving structures separated by less than the theoretical diffraction-limited resolution. This unique label-free angiographic performance demonstrates the general applicability of MB-OAM as a super-resolution deep-tissue imaging method capable of breaking through the limits imposed by acoustic diffraction.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2417
Author(s):  
Qiyang Chen ◽  
Hyeju Song ◽  
Jaesok Yu ◽  
Kang Kim

Abnormal changes of the microvasculature are reported to be key evidence of the development of several critical diseases, including cancer, progressive kidney disease, and atherosclerotic plaque. Super-resolution ultrasound imaging is an emerging technology that can identify the microvasculature noninvasively, with unprecedented spatial resolution beyond the acoustic diffraction limit. Therefore, it is a promising approach for diagnosing and monitoring the development of diseases. In this review, we introduce current super-resolution ultrasound imaging approaches and their preclinical applications on different animals and disease models. Future directions and challenges to overcome for clinical translations are also discussed.


Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3548
Author(s):  
Riccardo Carotenuto ◽  
Massimo Merenda ◽  
Demetrio Iero ◽  
Francesco G. Della Corte

Increasing efforts toward the development of positioning techniques testify the growing interest for indoor position-based applications and services. Many applications require accurate indoor positioning or tracking of people and assets, and some market sectors are starting a rapid growth of products based on these technologies. Ultrasonic systems have already been demonstrating their effectiveness and to possess the desired positioning accuracy and refresh rates. In this work, it is shown that a typical signal used in ultrasonic positioning systems to estimate the range between the target and reference points—namely, the linear chirp—due to the effects of acoustic diffraction, in some cases, undergoes a shape aberration, depending on the shape and size of the transducer and on the angle under which the transducer is seen by the receiver. In the presence of such signal shape aberrations, even one of the most robust ranging techniques, which is based on cross-correlation, provides results affected by a much greater error than expected. Numerical simulations are carried out for a typical ultrasonic chirp, ultrasonic emitter, and range technique based on cross-correlation and for a typical office room, obtained using the academic acoustic simulation software Field II. Spatial distributions of the ranging error are provided, clearly showing the favorable low error regions. The work demonstrates that particular attention must be paid to the design of the acoustic section of the ultrasonic positioning systems, considering both the shape and size of the ultrasonic emitters and the shape of the acoustic signal used.


Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 654
Author(s):  
Domingo Pardo-Quiles ◽  
José-Víctor Rodríguez

A uniform theory of diffraction (UTD)-based method for analysis of the multiple diffraction of acoustic waves when considering a series of symmetric obstacles with arbitrary modeling, height and spacing is hereby presented. The method, which makes use of graph theory, funicular polygons and Fresnel ellipsoids, proposes a novel approach by which only the relevant obstacles and paths of the scenario under study are considered, therefore simultaneously providing fast and accurate prediction of sound attenuation. The obstacles can be modeled either as knife edges, wedges, wide barriers or cylinders, with some other polygonal diffracting elements, such as doubly inclined, T- or Y-shaped barriers, also considered. In view of the obtained results, this method shows good agreement with previously published formulations and measurements whilst offering better computational efficiency, thus allowing for the consideration of a large number of obstacles.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Daniel Doktofsky ◽  
Moriya Rosenfeld ◽  
Ori Katz

AbstractAcousto-optic imaging (AOI) enables optical-contrast imaging deep inside scattering samples via localized ultrasound modulation of scattered light. However, the resolution in AOI is inherently limited by the ultrasound focus size, prohibiting microscopic investigations. In recent years advances in the field of digital wavefront-shaping allowed the development of novel approaches for overcoming AOI’s acoustic resolution limit. However, these approaches require thousands of wavefront measurements within the sample speckle decorrelation time, limiting their application to static samples. Here, we show that it is possible to surpass the acoustic resolution-limit with a conventional AOI system by exploiting the natural dynamics of speckle decorrelations rather than trying to overcome them. We achieve this by adapting the principles of super-resolution optical fluctuations imaging (SOFI) to AOI. We show that naturally fluctuating optical speckle grains can serve in AOI as the analogues of blinking fluorophores in SOFI, enabling super-resolution by statistical analysis of fluctuating acousto-optic signals.


Sign in / Sign up

Export Citation Format

Share Document