stopping distance
Recently Published Documents


TOTAL DOCUMENTS

189
(FIVE YEARS 51)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Zhongxing Li ◽  
Guojian Huang ◽  
Haixia Ma ◽  
Zhenya He

2021 ◽  
Author(s):  
wei lv ◽  
Yee Mun Lee ◽  
Chinebuli Uzondu ◽  
Ruth Madigan ◽  
Rafael Goncalves ◽  
...  

This distributed simulator study investigated pedestrians’ head-turning behaviour during a series of road crossings in a CAVE-based pedestrian simulator. Pedestrians were required to cross the road in front of an approaching vehicle, the kinematic behaviour of which was either programmed by the simulation to depict an automated vehicle (AV) or controlled by a human driver (HD), via a connected (hidden) desktop driving simulator. A within-participant experimental design was used with twenty-five pairs of participants (a pedestrian and a driver). For each trial, pedestrians had to decide whether to cross in front of the HD/AV, which was instructed (or programmed) to yield (or not) to the pedestrian. For the AV trials, two braking patterns were included: a hard-braking AV (AVHB, deceleration rate = 3.2 m/s2, stopping distance = 12 m from pedestrian) and soft-braking (AVSB, deceleration rate = 2.5 m/s2, stopping distance = 4 m from pedestrian). Pedestrians’ head-turning frequency and the change in head-turning angle, were calculated for each condition, both before a crossing was initiated, and during the actual road crossing. Results showed a significant increase in head-turning behaviour in the last 2 seconds before a crossing initiation in the yielding trials, in line with a ‘last-second check’ reported in observations of real-world crossings (Hassan, Geruschat, & Turano, 2005). The vehicle’s braking behaviour and stopping distance were the most important factors affecting pedestrians’ head-turning patterns during the crossing, with the least head-turning behaviour seen in the AVSB condition, compared with AVHB and HDB trials. This suggests that a closer stopping distance for the AV was associated with less confusion for the pedestrian, although this condition was also associated with the longest crossing initiation time. In contrast, the highest number of head-turnings were seen for the human-driven vehicle, which, on average, yielded about 40 m away from the participants, enabling a much faster crossing initiation. Overall, the shortest crossing initiation time (~ 1 sec) and highest head-turning behaviour were seen in the non-braking conditions, where participants crossed as quickly as the circumstances allowed. These results provide new insights about the use of VR simulators for understanding pedestrians’ crossing behaviour in response to different vehicle kinematics. They also extend our knowledge of pedestrian cues for the development of suitable sensors in future automated vehicles, which should help with providing a more seamless interaction between AVs and other road users in mixed traffic settings.


Shock Waves ◽  
2021 ◽  
Author(s):  
C. J. Aouad ◽  
W. Chemissany ◽  
P. Mazzali ◽  
Y. Temsah ◽  
A. Jahami

AbstractThe evolution of the fireball resulting from the August 2020 Beirut explosion is traced using amateur videos taken during the first 400 ms after the detonation. Thirty-nine frames separated by 16.66–33.33 ms are extracted from six different videos located precisely on the map. Time evolution of the shock wave radius is traced by the fireball at consecutive time moments until about $$ t \approx 170$$ t ≈ 170  ms and a distance $$ d \approx 128$$ d ≈ 128  m. Pixel scales for the videos are calibrated by de-projecting the existing grain silos building, for which accurate as-built drawings are available, using the length, the width, and the height and by defining the line-of-sight incident angles. In the distance range $$ d \approx $$ d ≈ 60–128 m from the explosion center, the evolution of the fireball follows the Sedov–Taylor model with spherical geometry and an almost instantaneous energy release. This model is used to derive the energy available to drive the shock front at early times. Additionally, a drag model is fitted to the fireball evolution until its stopping at a time $$ t \approx 500$$ t ≈ 500  ms at a distance $$d \approx 145\pm 5$$ d ≈ 145 ± 5  m. Using the derived TNT equivalent yield, the scaled stopping distance reached by the fireball and the shock wave-fireball detachment epoch within which the fireball is used to measure the shock wave are in excellent agreement with other experimental data. A total TNT equivalence of $$ 200\pm 80\,\mathrm{t}$$ 200 ± 80 t at a distance $$ d \approx 130$$ d ≈ 130  m is found. Finally, the dimensions of the crater size taken from a hydrographic survey conducted 6 days after the explosion are scaled with the known correlation equations yielding a close range of results. A recent published article by Dewey (Shock Waves 31:95–99, 2021) shows that the Beirut explosion TNT equivalence is an increasing function of distance. The results of the current paper are quantitatively in excellent agreement with this finding. These results present an argument that the actual mass of ammonium nitrate that contributed to the detonation is much less than the quantity that was officially claimed available.


2021 ◽  
Vol 10 (11) ◽  
pp. e584101119931
Author(s):  
Matheus Silva Oliveira ◽  
Claudia Azevedo Pereira

The Brazilian law N° 12.587/12 on urban mobility, currently in effect, aims to ensure the improvement of accessibility, and the trafficability of people and cargo in cities, as well as integrate transport modes, and study mechanisms for infrastructure management. Cities with a population of more than 20,000 had to create their urban mobility plans, according to the requirements of the Ministry of the City. The objective of the plan is to conceive projects that aim to mitigate operational and functional problems in the transportation network within the municipalities. One of these cities that is creating a mobility plan is Anápolis-GO, where its plan includes the implementation of bus lanes on the main avenues of the municipality. In these corridors, there was the substitution of the flexible pavement by slabs of PCC (Portland cement concrete), at the boarding and alighting points, due to the sudden braking events and occasional acceleration. Given this scenario, the study aimed to analyze the stopping distance at these locations, as a function of road speed and braking rate, to assess whether the length of these slabs would be sufficient to what was proposed. In addition, it was sought to monitor the pavement against the performance of the PCC slabs, given the incident loads of braking and acceleration, as well as the performance of the flexible pavement, predicting the possible consequences and/or pathologies that may occur due to the operation, since the existing traffic in the corridors should be compatible with that of a high-speed road.


2021 ◽  
Vol 13 (18) ◽  
pp. 10143
Author(s):  
Alexandru Viorel Rusu ◽  
Catalin Daniel Galatanu ◽  
Gheorghe Livint ◽  
Dorin Dumitru Lucache

This paper presents a study on the influence of the observer’s position in relation to the calculation surface. This is the initial observation of the research, respectively that the two standards consider the position of the observer differently. For these situations, two types of calculations were performed. For the first set of calculations, the software used was DIALux 4.13 as this software can perform calculations in line with the RP-08 standard. The second set of calculations was performed with a script that offers the possibility to change the observer’s position. The conclusion was that EN-13201 has a better approach, but both standards could be improved. The second case study refers to the influence of the longitudinal observer position in an average luminance calculation. If one considers RP-08 as a guideline for performing the calculations, the conclusions are that changing the distance from the observer to the calculation surface has absolutely no effect on the average luminance value. On the other hand, if European standards are used as a guideline, changing the distance (from the standardized 60 m, either closer to the calculation surface or further away) can influence the overall results in average luminance and uniformity. Taking into account the results of these two case studies, the conclusion is that both RP-08 and BS-EN 13201 should be updated so that the observer’s distance in relation to the calculation surface would be a variable dependent on the stopping distance calculated based on the speed limit of the road.


Author(s):  
Sivaramakrishnan Rajendar ◽  
Dhivya Rathinasamy ◽  
R. Pavithra ◽  
Vishnu Kumar Kaliappan ◽  
S. Gnanamurthy

2021 ◽  
Author(s):  
Kaitlyn Ann Greto

The truck escape ramp design presented by the Transportation Association of Canada is based on deterministic values of the design variables which include the required stopping distance, design speed, rolling resistance, and grade. Currently, a reliability analysis of the design of truck escape ramps does not exist. This report presents two methods used to analyze the reliability of truck escape ramp design; the first order second moment reliability method and the advanced first order second moment reliability method. These methods do not rely on deterministic values rather the mean and variance (moments) of each random variable’s probability distribution. Each reliability method was used to analyze truck escape ramps with one grade and two grades, for a total of four cases. The results of each case are provided and discussed along with an application to two existing truck escape ramps. The results show that the advanced first order second moment reliability method ensures more accurate results as well as a larger safety margin in comparison to the first order second moment method due to the nature of the methodology itself which considers design points.


2021 ◽  
Author(s):  
Kaitlyn Ann Greto

The truck escape ramp design presented by the Transportation Association of Canada is based on deterministic values of the design variables which include the required stopping distance, design speed, rolling resistance, and grade. Currently, a reliability analysis of the design of truck escape ramps does not exist. This report presents two methods used to analyze the reliability of truck escape ramp design; the first order second moment reliability method and the advanced first order second moment reliability method. These methods do not rely on deterministic values rather the mean and variance (moments) of each random variable’s probability distribution. Each reliability method was used to analyze truck escape ramps with one grade and two grades, for a total of four cases. The results of each case are provided and discussed along with an application to two existing truck escape ramps. The results show that the advanced first order second moment reliability method ensures more accurate results as well as a larger safety margin in comparison to the first order second moment method due to the nature of the methodology itself which considers design points.


2021 ◽  
Author(s):  
Yvonne Nowosielski ◽  
Benedikt Leitner ◽  
Teresa Rauchegger ◽  
Reinhard Angermann ◽  
Angeliki Psomiadi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document