heading estimation
Recently Published Documents


TOTAL DOCUMENTS

145
(FIVE YEARS 53)

H-INDEX

18
(FIVE YEARS 3)

2021 ◽  
Vol 2 (1) ◽  
pp. 56-69
Author(s):  
Muhammad Iqbal ◽  
Masood Ur Rehman ◽  
Umar Iqbal Bhatti ◽  
Najam Abbas Naqvi

For land navigation applications, the integration of the magnetometer with the combination of MEMS-INS and the Global Navigation Satellite System (GNSS) give excellent results. During land navigation applications, the magnetometer’s heading can also be used during the GNSS outages. The calibration of the magnetometer is indispensable to calculate its accurate heading. There exist several methods for magnetometer calibration. Some are offline and some are online calibration techniques. In this paper, a calibration method is proposed to estimate the magnetometer’s parameters through online calibration in run time. In this method, the reference magnetic field is calculated from the World Magnetic Model (WMM-2020). Moreover, reference roll, pitch and heading are provided from some other sources such as GNSS, Attitude Heading Reference System (AHRS), or reference INS. For different roll and pitch sectors, calibration parameters are estimated and stored. These parameters are used for magnetometer online calibration during the field testing. Both the headings obtained by the online calibration and conventional lab calibrations are analysed. Furthermore, the heading estimated through the online calibration is autonomous and fast. Subsequently, there is no user involvement in this online calibration technique and no specific movements to the device are provided. The heading obtained by novel technique is as accurate as obtained by conventional offline lab calibration.


2021 ◽  
Vol 10 (1) ◽  
pp. 21
Author(s):  
Ahmed Mansour ◽  
Wu Chen ◽  
Huan Luo ◽  
Yaxin Li ◽  
Jingxian Wang ◽  
...  

The inherent errors of low-cost inertial sensors cause significant heading drift that accumulates over time, making it difficult to rely on Pedestrian Dead Reckoning (PDR) for navigation over a long period. Moreover, the flexible portability of the smartphone poses a challenge to PDR, especially for heading determination. In this work, we aimed to control the PDR drift under the conditions of the unconstrained smartphone to eventually enhance the PDR performance. To this end, we developed a robust step detection algorithm that efficiently captures the peak and valley events of the triggered steps regardless of the device’s pose. The correlation between these events was then leveraged as distinct features to improve smartphone pose detection. The proposed PDR system was then designed to select the step length and heading estimation approach based on a real-time walking pattern and pose discrimination algorithm. We also leveraged quasi-static magnetic field measurements that have less disturbance for estimating reliable compass heading and calibrating the gyro heading. Additionally, we also calibrated the step length and heading when a straight walking pattern is observed between two base nodes. Our results showed improved device pose recognition accuracy. Furthermore, robust and accurate results were achieved for step length, heading and position during long-term navigation under unconstrained smartphone conditions.


2021 ◽  
Vol 15 (03) ◽  
pp. 313-335
Author(s):  
Mojtaba Karimi ◽  
Edwin Babaians ◽  
Martin Oelsch ◽  
Eckehard Steinbach

Robust attitude and heading estimation in an indoor environment with respect to a known reference are essential components for various robotic applications. Affordable Attitude and Heading Reference Systems (AHRS) are typically using low-cost solid-state MEMS-based sensors. The precision of heading estimation on such a system is typically degraded due to the encountered drift from the gyro measurements and distortions of the Earth’s magnetic field sensing. This paper presents a novel approach for robust indoor heading estimation based on skewed redundant inertial and magnetic sensors. Recurrent Neural Network-based (RNN) fusion is used to perform robust heading estimation with the ability to compensate for the external magnetic field anomalies. We use our previously described correlation-based filter model for preprocessing the data and for empowering perturbation mitigation. Our experimental results show that the proposed scheme is able to successfully mitigate the anomalies in the saturated indoor environment and achieve a Root-Mean-Square Error of less than [Formula: see text] for long-term use.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Ying Guo ◽  
Hanshuo Liu ◽  
Jin Ye ◽  
Shengli Wang ◽  
Chenxi Duan

The development of smartphone Micro-Electro-Mechanical Systems (MEMS) inertial sensors has provided opportunities to improve indoor navigation and positioning for location-based services. One area of indoor navigation research uses pedestrian dead reckoning (PDR) technology, in which the mobile phone must typically be held to the pedestrian’s chest. In this paper, we consider navigation in three other mobile phone carrying modes: “calling,” “pocket,” and “swinging.” For the calling mode, in which the pedestrian holds the phone to their face, the rotation matrix method is used to convert the phone’s gyroscope data from the calling state to the holding state, allowing calculation of the stable pedestrian forward direction. For a phone carried in a pedestrian’s trouser pocket, a heading complementary equation is established based on principal component analysis and rotation approach methods. In this case, the pedestrian heading is calculated by determining a subset of data that avoid 180° directional ambiguity and improve the heading accuracy. For the swinging mode, a heading capture method is used to obtain the heading of the lowest point of the pedestrian’s arm swing as they hold the phone. The direction of travel is then determined by successively adding the heading offsets each time the arm droops. Experimental analysis shows that 95% of the heading errors of the above three methods are less than 5.81°, 10.73°, and 9.22°, respectively. These results present better heading accuracy and reliability.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5475
Author(s):  
Assefinew Wondosen ◽  
Jin-Seok Jeong ◽  
Seung-Ki Kim ◽  
Yisak Debele ◽  
Beom-Soo Kang

The use of unmanned aerial vehicle (UAV) applications has grown rapidly over the past decade with the introduction of low-cost microelectromechanical system (MEMS)-based sensors that measure angular velocity, gravity, and magnetic field, which are important for an object orientation determination. However, the use of low-cost sensors has also been limited because their readings are easily distorted by unwanted internal and/or external noise signals such as environmental magnetic disturbance, which lead to errors in attitude and heading estimation results. In an extended Kalman filter (EKF) process, this study proposes a method for mitigating the effect of magnetic disturbance on attitude determination by using a double quaternion parameters for representation of orientation states, which decouples the magnetometer from attitude computation. Additionally, an online measurement error covariance matrix tuning system was implemented to reject the impact of magnetic disturbance on the heading estimation. Simulation and experimental tests were conducted to verify the performance of the proposed methods in resolving the magnetic noise effect on attitude and heading. The results showed that the proposed method performed better than complimentary, gradient descent, and single quaternion-based EKF.


2021 ◽  
Vol 10 (4) ◽  
pp. 1893-1904
Author(s):  
Putri Nur Farhanah Mohd Shamsuddin ◽  
Roshahliza M. Ramli ◽  
Muhamad Arifpin Mansor

An excellent navigation, guidance, and control (NGC) system had a high impact on trajectory tracking and the following scenarios. Both scenarios will include the heading, tangent, and velocity parameters in the computation. However, the control system design problem is not a new issue in the unmanned surface vehicle (USV) and autonomous ground vehivle (AGV) due to this constraint faced by many researchers since early these autonomy developments. Hence, this paper listed and emphasizing the techniques, including techniques implementation, strength, and the algorithm's constraints, a fusion of several techniques implemented for vehicle's stability, a turning ahead, and heading estimation. This paper concerns the similar algorithm used in the USV and AGV. Most of the selected techniques are basic algorithms and have been frequently implemented to control both vehicles' systems. Previous research shows pure pursuit guidance is the most popular technique in AGV to control the degree-of-freedom (DOF) velocity and the dynamic rate (sway, surge, and yaw). Simultaneously, the line of sight (LOS) controller is very compatible with controlling the movement of the USV. In conclusion, the technique's simulation test needs further research that will expose in the actual situation.


2021 ◽  
pp. 002029402110218
Author(s):  
Xufei Cui ◽  
Yibing Li ◽  
Qiuying Wang ◽  
Malek Karaim ◽  
Aboelmagd Noureldin

The integrated INS/magnetometer measurement is widely used in low-cost navigation systems. The integration has proven more effective in suppressing the divergence of heading than relying solely on a magnetometer because this is susceptible to local magnetic field interference, reducing heading accuracy. Magnetometers sense the local magnetic field that may be interfered by the nearby ferromagnetic material or strong electric currents. Hence, the magnetometer must be calibrated in the vehicle before use. When a magnetometer is installed near power components (engines, etc.), soft iron interference can be ignored. In the vehicle’s external environment, the time-varying hard iron interference can reach 100 times the strength of the geomagnetic field, meaning that a magnetometer cannot function efficiently because its accuracy is so reduced. Hence, the constant hard magnetic interference inside the vehicle is mainly concerned in this paper. An INS/Magnetometer heading estimation algorithm based on a two-stage Kalman filter is proposed to solve the problem by combining inertial sensor and magnetometer with attitude information. In the first stage filter, the constant hard iron interference is estimated by setting upward standing the three IMU axes. In the second stage filter, the INS/Magnetometer heading estimation is implemented. Finally, the results show that the algorithm improves the accuracy of vehicle heading calculations.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3582
Author(s):  
Federica Vitiello ◽  
Flavia Causa ◽  
Roberto Opromolla ◽  
Giancarmine Fasano

This paper describes a calibration technique aimed at combined estimation of onboard and external magnetic disturbances for small Unmanned Aerial Systems (UAS). In particular, the objective is to estimate the onboard horizontal bias components and the external magnetic declination, thus improving heading estimation accuracy. This result is important to support flight autonomy, even in environments characterized by significant magnetic disturbances. Moreover, in general, more accurate attitude estimates provide benefits for georeferencing and mapping applications. The approach exploits cooperation with one or more “deputy” UAVs and combines drone-to-drone carrier phase differential GNSS and visual measurements to attain magnetic-independent attitude information. Specifically, visual and GNSS information is acquired at different heading angles, and bias estimation is modelled as a non-linear least squares problem solved by means of the Levenberg–Marquardt method. An analytical error budget is derived to predict the achievable accuracy. The method is then demonstrated in flight using two customized quadrotors. A pointing analysis based on ground and airborne control points demonstrates that the calibrated heading estimate allows obtaining an angular error below 1°, thus resulting in a substantial improvement against the use of either the non-calibrated magnetic heading or the multi-sensor-based solution of the DJI onboard navigation filter, which determine angular errors of the order of several degrees.


Sign in / Sign up

Export Citation Format

Share Document