thermocapillary instability
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 12)

H-INDEX

12
(FIVE YEARS 3)

Author(s):  
Souradip Chattopadhyay ◽  
Anandamoy Mukhopadhyay ◽  
Amlan K. Barua ◽  
Amar K. Gaonkar

2019 ◽  
Vol 878 ◽  
pp. 169-189
Author(s):  
E. Kirkinis ◽  
A. V. Andreev

Thin viscous liquid films sitting on a solid substrate support nonlinear capillary waves, driven by surface shear stresses at a liquid–gas interface. When surface tension is spatially dependent other mechanisms, such as the thermocapillary effect, influence the dynamics of thin films. In this article we show that in liquids with broken time-reversal symmetry the character of the aforementioned waves and of the thermocapillary effect are significantly modified due to the presence of odd or Hall viscosity in the liquid. This is because odd viscosity gives rise to new terms in the pressure gradient of the flow thus modifying the evolution equation of the liquid–gas interface accordingly. These terms in turn break the reflection symmetry of the evolution equation leading the system to evolve from a pitchfork to a Hopf bifurcation. The odd-viscosity incipient waves can stabilize unstable thin liquid films. For instance, we show that they can suppress the thermocapillary instability. We establish the parameter ranges that odd viscosity has to satisfy in order to initiate those waves that will lead to stability.


2019 ◽  
Vol 872 ◽  
pp. 928-962 ◽  
Author(s):  
W. Batson ◽  
L. J. Cummings ◽  
D. Shirokoff ◽  
L. Kondic

In this work we consider a new class of oscillatory instabilities that pertain to thermocapillary destabilization of a liquid film heated by a solid substrate. We assume the substrate thickness and substrate–film thermal conductivity ratio are large so that the effect of substrate thermal diffusion is retained at leading order in the long-wave approximation. As a result, the system dynamics is described by a nonlinear partial differential equation for the film thickness that is non-locally coupled to the full substrate heat equation. Perturbing about a steady quiescent state, we find that its stability is described by a non-self-adjoint eigenvalue problem. We show that, under appropriate model parameters, the linearized eigenvalue problem admits complex eigenvalues that physically correspond to oscillatory (in time) instabilities of the thin-film height. As the principal results of our work, we provide a complete picture of the susceptibility to oscillatory instabilities for different model parameters. Using this description, we conclude that oscillatory instabilities are more relevant experimentally for films heated by insulating substrates. Furthermore, we show that oscillatory instability where the fastest-growing (most unstable) wavenumber is complex, arises only for systems with sufficiently large substrate thicknesses. Finally, we discuss adaptation of our model to a practical setting and make predictions of conditions at which the reported instabilities can be observed.


Sign in / Sign up

Export Citation Format

Share Document