water elimination
Recently Published Documents


TOTAL DOCUMENTS

88
(FIVE YEARS 14)

H-INDEX

20
(FIVE YEARS 2)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Johanna Seitz-Holland ◽  
Monica Lyons ◽  
Leila Kushan ◽  
Amy Lin ◽  
Julio E. Villalon-Reina ◽  
...  

AbstractDeletions and duplications at the 22q11.2 locus are associated with significant neurodevelopmental and psychiatric morbidity. Previous diffusion-weighted magnetic resonance imaging (MRI) studies in 22q11.2 deletion carriers (22q-del) found nonspecific white matter (WM) abnormalities, characterized by higher fractional anisotropy. Here, utilizing novel imaging and processing methods that allow separation of signal contribution from different tissue properties, we investigate whether higher anisotropy is driven by (1) extracellular changes, (2) selective degeneration of secondary fibers, or (3) volumetric differences. We further, for the first time, investigate WM microstructure in 22q11.2 duplication carriers (22q-dup). Multi-shell diffusion-weighted images were acquired from 26 22q-del, 19 22q-dup, and 18 healthy individuals (HC). Images were fitted with the free-water model to estimate anisotropy following extracellular free-water elimination and with the novel BedpostX model to estimate fractional volumes of primary and secondary fiber populations. Outcome measures were compared between groups, with and without correction for WM and cerebrospinal fluid (CSF) volumes. In 22q-del, anisotropy following free-water elimination remained significantly higher compared with controls. BedpostX did not identify selective secondary fiber degeneration. Higher anisotropy diminished when correcting for the higher CSF and lower WM volumes. In contrast, 22q-dup had lower anisotropy and greater extracellular space than HC, not influenced by macrostructural volumes. Our findings demonstrate opposing effects of reciprocal 22q11.2 copy-number variation on WM, which may arise from distinct pathologies. In 22q-del, microstructural abnormalities may be secondary to enlarged CSF space and more densely packed WM. In 22q-dup, we see evidence for demyelination similar to what is commonly observed in neuropsychiatric disorders.


NeuroImage ◽  
2021 ◽  
pp. 118605
Author(s):  
Ezequiel Farrher ◽  
Chia-Wen Chiang ◽  
Kuan-Hung Cho ◽  
Farida Grinberg ◽  
Richard P. Buschbeck ◽  
...  

2021 ◽  
Author(s):  
Matthew Teynor ◽  
Windsor Scott ◽  
Daniel Ess

Au and Pd complexes have emerged as highly effective π-bond cyclization catalysts to construct heterocycles. These cyclization reactions are generally proposed to proceed through multi-step addition-elimination mechanisms involving Au- or Pd-alkyl intermediates. For Au- and Pd-catalyzed allylic diol cyclization, while the DFT potential energy surface landscapes show a stepwise sequence of alkoxylation π-addition, proton transfer, and water elimination, quasiclassical direct dynamics simulations reveal new dynamical mechanisms that depend on the metal center. For Au, trajectories reveal that after π-addition the Au-alkyl intermediate is always skipped because addition is dynamically coupled with proton transfer and water elimination. In contrast, for Pd catalysis, due to differences in the potential-energy landscape shape, only about half of trajectories show Pd-alkyl intermediate skipping. The other half of the trajectories show the traditional two-step mechanism with the intervening Pd-alkyl intermediate. Overall, this work reveals that interpretation of a DFT potential-energy landscape can be insufficient to understand catalytic intermediates and mechanisms and that atomic momenta through dynamics simulations is needed to determine if an intermediate is genuinely part of a catalytic cycle.<br>


2021 ◽  
Author(s):  
Matthew Teynor ◽  
Windsor Scott ◽  
Daniel Ess

Au and Pd complexes have emerged as highly effective π-bond cyclization catalysts to construct heterocycles. These cyclization reactions are generally proposed to proceed through multi-step addition-elimination mechanisms involving Au- or Pd-alkyl intermediates. For Au- and Pd-catalyzed allylic diol cyclization, while the DFT potential energy surface landscapes show a stepwise sequence of alkoxylation π-addition, proton transfer, and water elimination, quasiclassical direct dynamics simulations reveal new dynamical mechanisms that depend on the metal center. For Au, trajectories reveal that after π-addition the Au-alkyl intermediate is always skipped because addition is dynamically coupled with proton transfer and water elimination. In contrast, for Pd catalysis, due to differences in the potential-energy landscape shape, only about half of trajectories show Pd-alkyl intermediate skipping. The other half of the trajectories show the traditional two-step mechanism with the intervening Pd-alkyl intermediate. Overall, this work reveals that interpretation of a DFT potential-energy landscape can be insufficient to understand catalytic intermediates and mechanisms and that atomic momenta through dynamics simulations is needed to determine if an intermediate is genuinely part of a catalytic cycle.<br>


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0242696
Author(s):  
Manon Edde ◽  
Guillaume Theaud ◽  
François Rheault ◽  
Bixente Dilharreguy ◽  
Catherine Helmer ◽  
...  

Diffusion MRI is extensively used to investigate changes in white matter microstructure. However, diffusion measures within white matter tissue can be affected by partial volume effects due to cerebrospinal fluid and white matter hyperintensities, especially in the aging brain. In previous aging studies, the cingulum bundle that plays a central role in the architecture of the brain networks supporting cognitive functions has been associated with cognitive deficits. However, most of these studies did not consider the partial volume effects on diffusion measures. The aim of this study was to evaluate the effect of free water elimination on diffusion measures of the cingulum in a group of 68 healthy elderly individuals. We first determined the effect of free water elimination on conventional DTI measures and then examined the effect of free water elimination on verbal fluency performance over 12 years. The cingulum bundle was reconstructed with a tractography pipeline including a white matter hyperintensities mask to limit the negative impact of hyperintensities on fiber tracking algorithms. We observed that free water elimination increased the ability of conventional DTI measures to detect associations between tissue diffusion measures of the cingulum and changes in verbal fluency in older individuals. Moreover, free water content and mean diffusivity measured along the cingulum were independently associated with changes in verbal fluency. This suggests that both tissue modifications and an increase in interstitial isotropic water would contribute to cognitive decline. These observations reinforce the importance of using free water elimination when studying brain aging and indicate that free water itself could be a relevant marker for age-related cingulum white matter modifications and cognitive decline.


Author(s):  
M. Azaro ◽  
F. M. Flores ◽  
M. Casella ◽  
C. Rodríguez ◽  
R. M. Torres Sánchez ◽  
...  

Abstract It is known that the excess of oxyanions such as NO3- and BrO3- in drinking water affects its quality. In this work, three adsorbents (montmorillonite (Mt), silica (Si), and diatomaceous earth) loaded with hexadecyl- (H) and octadecyl-trimethylammonium (O) were used to remove these oxyanions from aqueous solutions by adsorption. In batch systems, the highest NO3- removal was obtained with Mt modified with H and O (Mt-H and Mt-O), attaining 33 and 50%, respectively, while for BrO3- removal Si modified with H and O, Si-H and Si-O samples, reached 38 and 42%, respectively. A direct relationship between the adsorption capacity of NO3- and BrO3- and the mass of the adsorbent was found in column filtration tests with Mt-O and Mt-H samples in standard solution and real groundwater samples. The adsorption capacity of the column, in the groundwater sample, remained constant after two reuses.The results obtained are promising for the development of a continuous oxyanion removal system containing the low-cost clay Mt modified with either H or O.


Chemistry ◽  
2020 ◽  
Vol 2 (4) ◽  
pp. 918-936
Author(s):  
Carlo Canepa

A model for the survival of the amino acid content in micrometeorites and its possible transformations upon atmospheric entry is described. Since any organic species released in the atmosphere at high altitudes would exhibit a limited lifetime with respect to the typical timescale for atmospheric mixing (due to the substantial radiation field of the early Sun), only the organic content inside the meteorites could have contributed to prebiotic chemistry. It is thus important to determine both the amino acid loss from meteorites, due to both degassing and chemical degradation, and the extent of the chemical transformation of amino acids subjected to the increased temperature due to friction with the atmosphere. According to the interplay between the potential energy barrier and the pre-exponential factor in rate coefficients, either diffusion or chemical processing might be the dominant process following the rising temperature upon atmospheric entry. The possibility of the elimination of water from glycine to form aminoketene, or CO2 to form methylamine, ultimately driven by gravitational energy, was examined along with the more conventional formation of a peptide bond between two glycine units to afford Gly–Gly. While retention, degassing, and decarboxylation are the fastest processes, each dominating in different ranges of the initial velocity and radius, the formation of either Gly–Gly from bimolecular water elimination or aminoketene from unimolecular water elimination appears to be negligible.


2020 ◽  
Vol 124 (17) ◽  
pp. 3591-3601
Author(s):  
Yogitabali M. Narode ◽  
Beena G. Singh ◽  
Sergej Naumov ◽  
Kiran Kumar K. Sharma ◽  
Geeta K. Sharma

2020 ◽  
Vol 33 (4) ◽  
Author(s):  
Ezequiel Farrher ◽  
Farida Grinberg ◽  
Li‐Wei Kuo ◽  
Kuan‐Hung Cho ◽  
Richard P. Buschbeck ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document