selective inversion
Recently Published Documents


TOTAL DOCUMENTS

112
(FIVE YEARS 11)

H-INDEX

20
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Nicholas J Sisco ◽  
Ping Wang ◽  
Ashley M Stokes ◽  
Richard D Dortch

Background: Magnetic resonance imaging (MRI) is used extensively to quantify myelin content, however computational bottlenecks remain challenging for advanced imaging techniques in clinical settings. We present a fast, open-source toolkit for processing quantitative magnetization transfer derived from selective inversion recovery (SIR) acquisitions that allows parameter map estimation, including the myelin-sensitive macromolecular pool size ratio (PSR). Significant progress has been made in reducing SIR acquisition times to improve clinically feasibility. However, parameter map estimation from the resulting data remains computationally expensive. To overcome this computational limitation, we developed a computationally efficient, open-source toolkit implemented in the Julia language. Methods: To test the accuracy of this toolkit, we simulated SIR images with varying PSR and spin-lattice relaxation time of the free water pool (R1f) over a physiologically meaningful scale from 5 to 20% and 0.5 to 1.5 s-1, respectively. Rician noise was then added, and the parameter maps were estimated using our Julia toolkit. Probability density histogram plots and Lin's concordance correlation coefficients (LCCC) were used to assess accuracy and precision of the fits to our known simulation data. To further mimic biological tissue, we generated five cross-linked bovine serum albumin (BSA) phantoms with concentrations that ranged from 1.25 to 20%. The phantoms were imaged at 3T using SIR, and data were fit to estimate PSR and R1f. Similarly, a healthy volunteer was imaged at 3T, and SIR parameter maps were estimated to demonstrate the reduced computational time for a real-world clinical example. Results: Estimated SIR parameter maps from our Julia toolkit agreed with simulated values (LCCC> 0.98). This toolkit was further validated using BSA phantoms and a whole brain scan at 3T. In both cases, SIR parameter estimates were consistent with published values using MATLAB. However, compared to earlier work using MATLAB, our Julia toolkit provided an approximate 20-fold reduction in computational time. Conclusions: Presented here, we developed a fast, open-source, toolkit for rapid and accurate SIR MRI using Julia. The reduction in computational cost should allow SIR parameters to be accessible in clinical settings.


2021 ◽  
Vol 2 (1) ◽  
pp. 331-340
Author(s):  
Lisanne Sellies ◽  
Ruud L. E. G. Aspers ◽  
Marco Tessari

Abstract. Non-hydrogenative para-hydrogen-induced polarization (PHIP) is a fast, efficient and relatively inexpensive approach to enhance nuclear magnetic resonance (NMR) signals of small molecules in solution. The efficiency of this technique depends on the interplay of NMR relaxation and kinetic processes, which, at high concentrations, can be characterized by selective inversion experiments. However, in the case of dilute solutions this approach is clearly not viable. Here, we present alternative PHIP-based NMR experiments to determine hydrogen and hydride relaxation parameters as well as the rate constants for para-hydrogen association with and dissociation from asymmetric PHIP complexes at micromolar concentrations. Access to these parameters is necessary to understand and improve the PHIP enhancements of (dilute) substrates present in, for instance, biofluids and natural extracts.


2021 ◽  
Author(s):  
Florin Teleanu ◽  
Paul R. Vasos

Abstract. Long-lived spin order-based approaches for magnetic resonance rely on the transition between two magnetic environments of different symmetry, one governed by the magnetic field of the spectrometer and the other where this strong magnetic field is inconsequential. Research on the excitation of magnetic-symmetry transitions in nuclear spins is a scientific field that debuted in Southampton in the years 2000. We advanced in this field carrying the baggage of pre-established directions in NMR spectroscopy. We propose to reveal in this text the part of discoveries that may have been obscured by our choice to only look at them through the experience of such pre-established directions, at the time. Focussing on potential applications, we may have insufficiently emphasised in the manuscripts the methodological developments that necessitated most scientific effort. Such methods developments foster most of the progress in NMR. Thus, we present the contributed mechanisms of translation between the symmetric and non-symmetric environments with respect to the main magnetic field B0, free of any utilitarian perspective. The concept of zero-quantum rotations in the starting blocks of long-lived state populations, magnetisation transfers between hyperpolarised heteronuclei and protons, and selective inversion for long-lived coherences are discussed, as well as hybrid 2D methods based on both insensitive nuclei excitation (“INEPT”) and long-lived spin order. We can see at this point that these magnetic wheels will take a longer time than we initially thought to set in motion new applications in studies of slow diffusion, angiography, or large-protein structure. However, these pulse sequences seed subsequent magnetic mechanisms that are sure to contribute to applications. For instance, some of the introduced coherence rotations were combined with classical pulse blocks to obtain 2D correlations between protons and heteronuclei. We hope the pulse sequence building blocks discussed herein open further perspectives for magnetic resonance experiments with long-lived spin order.


2021 ◽  
Author(s):  
Lisanne Sellies ◽  
Ruud L. E. G. Aspers ◽  
Marco Tessari

Abstract. Non-hydrogenative Para-Hydrogen Induced Polarization (PHIP) is a fast, efficient and relatively inexpensive approach to enhance Nuclear Magnetic Resonance (NMR) signals of small molecules in solution. The efficiency of this technique depends on the interplay of NMR relaxation and kinetic processes, which, at high concentrations, can be characterized by selective inversion experiments. However, in the case of dilute solutions this approach is clearly not viable. Here, we present alternative PHIP-based NMR experiments to determine hydrogen and hydrides’ relaxation parameters as well as the rate constants for p-H2 association and dissociation from asymmetric PHIP complexes at micromolar concentrations. Access to these parameters is necessary to understand and improve the PHIP enhancements of (dilute) substrates present in, for instance, biofluids and natural extracts.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Mihajlo Novakovic ◽  
Ēriks Kupče ◽  
Andreas Oxenfarth ◽  
Marcos D. Battistel ◽  
Darón I. Freedberg ◽  
...  

Abstract Multidimensional TOCSY and NOESY are central experiments in chemical and biophysical NMR. Limited efficiencies are an intrinsic downside of these methods, particularly when targeting labile sites. This study demonstrates that the decoherence imparted on these protons through solvent exchanges can, when suitably manipulated, lead to dramatic sensitivity gains per unit time in the acquisition of these experiments. To achieve this, a priori selected frequencies are encoded according to Hadamard recipes, while concurrently subject to looped selective inversion or selective saturation procedures. Suitable processing then leads to protein, oligosaccharide and nucleic acid cross-peak enhancements of ≈200–1000% per scan, in measurements that are ≈10-fold faster than conventional counterparts. The extent of these gains will depend on the solvent exchange and relaxation rates of the targeted sites; these gains also benefit considerably from the spectral resolution provided by ultrahigh fields, as corroborated by NMR experiments at 600 MHz and 1 GHz. The mechanisms underlying these experiments’ enhanced efficiencies are analyzed on the basis of three-way polarization transfer interplays between the water, labile and non-labile protons, and the experimental results are rationalized using both analytical and numerical derivations. Limitations as well as further extensions of the proposed methods, are also discussed.


2020 ◽  
Vol 84 (5) ◽  
pp. 2512-2522 ◽  
Author(s):  
Dapeng Liu ◽  
Feng Xu ◽  
Wenbo Li ◽  
Peter C. Zijl ◽  
Doris D. Lin ◽  
...  

2020 ◽  
Vol 68 ◽  
pp. 66-74 ◽  
Author(s):  
Matthew J. Cronin ◽  
Junzhong Xu ◽  
Francesca Bagnato ◽  
Daniel F. Gochberg ◽  
John C. Gore ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document