Application of the Paracentrotus lividus sea-urchin embryo-larval bioassay to the marine pollution biomonitoring program in the Tunisian coast

Author(s):  
Chayma Gharred ◽  
Maroua Jenzri ◽  
Zied Bouraoui ◽  
Hamadi Guerbej ◽  
Jamel Jebali ◽  
...  
Author(s):  
F. Sellem ◽  
B. Bouhaouala-Zahar

AbstractThe present study was conducted to provide biometric data of the edible sea urchin Paracentrotus lividus along the Tunisian coastline where thirteen marine localities were selected randomly. A total of 653 individuals were collected and their metric and weight measurements were recorded. The size distribution of the different samples was determined and relative growth expressions were deduced. Data analysis showed that all localities’ samples of the wild population were dominated by one-size class, except Port Prince and Haouaria. Interestingly, only diameter-height relationships (D-H) were different between the geographical localities. Diameter-weight relationships (D-TW and D-TWTE) revealed a significant negative growth for all the localities, with the exception of Gammarth which showed positive growth for total weight (D-TW). Moreover, the multivariable analysis revealed divergences and/or similarities between metric and weight variables. Altogether, data highlights the inter-population discrimination with respect to geographic localization and clear segregation between the northern and the eastern localities demonstrated the plasticity of the species.


1987 ◽  
Vol 20 (2-3) ◽  
pp. 137-146 ◽  
Author(s):  
P. Andreuccetti ◽  
M.R. Barone Lumaga ◽  
G. Cafiero ◽  
S. Filosa ◽  
E. Parisi

eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Vincenzo Cavalieri ◽  
Giovanni Spinelli

Dorsal/ventral (DV) patterning of the sea urchin embryo relies on a ventrally-localized organizer expressing Nodal, a pivotal regulator of the DV gene regulatory network. However, the inceptive mechanisms imposing the symmetry-breaking are incompletely understood. In Paracentrotus lividus, the Hbox12 homeodomain-containing repressor is expressed by prospective dorsal cells, spatially facing and preceding the onset of nodal transcription. We report that Hbox12 misexpression provokes DV abnormalities, attenuating nodal and nodal-dependent transcription. Reciprocally, impairing hbox12 function disrupts DV polarity by allowing ectopic expression of nodal. Clonal loss-of-function, inflicted by blastomere transplantation or gene-transfer assays, highlights that DV polarization requires Hbox12 action in dorsal cells. Remarkably, the localized knock-down of nodal restores DV polarity of embryos lacking hbox12 function. Finally, we show that hbox12 is a dorsal-specific negative modulator of the p38-MAPK activity, which is required for nodal expression. Altogether, our results suggest that Hbox12 function is essential for proper positioning of the DV organizer.


2004 ◽  
pp. 83-87
Author(s):  
R Russo ◽  
V Matranga ◽  
F Zito ◽  
C Costa ◽  
S Sciarrino ◽  
...  

1998 ◽  
Vol 111 (17) ◽  
pp. 2519-2527 ◽  
Author(s):  
S. Chiri ◽  
C. De Nadai ◽  
B. Ciapa

MAP kinases have been implicated in the control of a broad spectrum of cellular events in many types of cells. In somatic cells, MAP kinase activation seems to be triggered after exit from a quiescent state (in G0 or G2) only and then inactivated by entry into a proliferative state. In oocytes of various species, a one-time activation of MAP kinase that is apparently not repeated during the succeeding mitotic cycles occurs after meiotic activation. However, several reports suggest that a myelin basic protein (MBP) kinase activity, unrelated to that of maturation promoting factor, can sometimes be detected during mitotic divisions in various types of cells and oocytes. We have reinvestigated this problem in order to determine the origin and the role of MBP kinase that is stimulated at time of mitosis in the fertilized eggs of the sea urchin Paracentrotus lividus. We used anti-ERK1 antibodies or substrates specific for different MAP kinases, and performed in-gel phosphorylation experiments. Our results suggest that an ERK1-like protein was responsible for part of the MBP kinase activity that is stimulated during the first mitotic divisions. Furthermore, we observed that wortmannin, an inhibitor of PI 3-kinase that arrests the fertilized sea urchin eggs at the prometaphase stage, inhibited the inactivation of MAP kinase normally observed when the eggs divide, suggesting a role for PI 3-kinase in the deactivation process of MAP kinase. We also discuss how the activities of MPF and MAP kinase may be interconnected to regulate the first mitotic divisions of the early sea urchin embryo.


Sign in / Sign up

Export Citation Format

Share Document