pivoting algorithm
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 5)

H-INDEX

10
(FIVE YEARS 1)

2022 ◽  
pp. 1-8
Author(s):  
Wanjun Xu ◽  
Shanhui Zhao ◽  
Zhengyang Geng ◽  
Miaomiao Niu

Abstract In order to reduce the dependence of accuracy on the number of grids in the Ausas cavitation algorithm, a modified Ausas algorithm was presented. By modifying the mass-conservative Reynolds equation with the concept of linear complementarity problems (LCPs), the coupling of film thickness h and density ratio θ disappeared. The modified equation achieved a new discrete scheme that ensured a complete second-order-accurate central difference scheme for the full film region, avoiding a hybrid-order-accurate discrete scheme. A journal bearing case was studied to show the degree of accuracy improvement and the calculation time compared to a standard LCP solver. The results showed that the modified Ausas algorithm made the asymptotic and convergent behavior with the increase of nodes disappear and allowed for the use of coarse meshes to obtain sufficient accuracy. The calculation time of the modified Ausas algorithm is shorter than the LCP solver (Lemke's pivoting algorithm) for middle and large scale problems.


Author(s):  
Aniekan A. Ebiefung ◽  
Luís M. Fernandes ◽  
Joaquim J. Júdice ◽  
Michael M. Kostreva

Mathematics ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 2226 ◽  
Author(s):  
José Niño-Mora

The Whittle index for restless bandits (two-action semi-Markov decision processes) provides an intuitively appealing optimal policy for controlling a single generic project that can be active (engaged) or passive (rested) at each decision epoch, and which can change state while passive. It further provides a practical heuristic priority-index policy for the computationally intractable multi-armed restless bandit problem, which has been widely applied over the last three decades in multifarious settings, yet mostly restricted to project models with a one-dimensional state. This is due in part to the difficulty of establishing indexability (existence of the index) and of computing the index for projects with large state spaces. This paper draws on the author’s prior results on sufficient indexability conditions and an adaptive-greedy algorithmic scheme for restless bandits to obtain a new fast-pivoting algorithm that computes the n Whittle index values of an n-state restless bandit by performing, after an initialization stage, n steps that entail (2/3)n3+O(n2) arithmetic operations. This algorithm also draws on the parametric simplex method, and is based on elucidating the pattern of parametric simplex tableaux, which allows to exploit special structure to substantially simplify and reduce the complexity of simplex pivoting steps. A numerical study demonstrates substantial runtime speed-ups versus alternative algorithms.


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Xi-Ming Fang ◽  
Zhi-Jun Qiao ◽  
Heng-Jun Zhao

The principal pivoting algorithm is a popular direct algorithm in solving the linear complementarity problem, and its block forms had also been studied by many authors. In this paper, relying on the characteristic of block principal pivotal transformations, a block principal pivoting algorithm is proposed for solving the linear complementarity problem with an M-matrix. By this algorithm, the linear complementarity problem can be solved in some block principal pivotal transformations. Besides, both the lower-order and the higher-order experiments are presented to show the effectiveness of this algorithm.


2018 ◽  
Vol 35 (05) ◽  
pp. 1850035
Author(s):  
S. K. Neogy ◽  
Prasenjit Mondal ◽  
Abhijit Gupta ◽  
Debasish Ghorui

Two classical pivoting algorithms, due to Lemke and Cottle–Dantzig, are studied on linear complementarity problems (LCPs) and their generalizations that arise from infinite duration two-person mean payoff games (MPGs) under zero-mean partition problem. Lemke’s algorithm was studied in solving MPGs via reduction to discounted payoff games or to simple stochastic games. We provide an alternative and efficient approach for studying the LCPs arising from the MPGs without any reduction. A binary MPG can easily be formulated as an LCP which has always terminated in a complementary solution in numerical experiments, but has not yet been proven either the processability of MPG’s by Lemke’s algorithm or a counter example that it will not terminate with a solution. Till now, the processability of MPG’s by Lemke’s algorithm remains open. A general MPG (with arbitrary outgoing arcs) naturally reduces to a generalized linear complementarity problem (GLCP) involving a rectangular matrix where the vertices are represented by the columns and the outgoing arcs from each vertex are represented by rows in a particular block. The noteworthy result in this paper is that the GLCP obtained from an MPG is processable by Cottle–Dantzig principal pivoting algorithm which terminates with a solution. Several properties of the matrix which arise in this context are also discussed.


Author(s):  
Andreas Enzenhöfer ◽  
Albert Peiret ◽  
Marek Teichmann ◽  
József Kövecses

Modeling multibody systems subject to unilateral contacts and friction efficiently is challenging, and dynamic formulations based on the mixed linear complementarity problem (MLCP) are commonly used for this purpose. The accuracy of the MLCP solution method can be evaluated by determining the error introduced by it. In this paper, we find that commonly used MLCP error measures suffer from unit inconsistency leading to the error lacking any physical meaning. We propose a unit-consistent error measure which computes energy error components for each constraint dependent on the inverse effective mass and compliance. It is shown by means of a simple example that the unit consistency issue does not occur using this proposed error measure. Simulation results confirm that the error decreases with convergence toward the solution. If a pivoting algorithm does not find a solution of the MLCP due to an iteration limit, e.g. in real-time simulations, choosing the result with the least error can reduce the risk of simulation instabilities.


Author(s):  
Shan Liu ◽  
Guanghong Gong ◽  
Luhao Xiao ◽  
Mengyuan Sun ◽  
Zhengliang Zhu

This paper improves the algorithm of point cloud filtering and registration in 3D modeling, aiming for smaller sampling error and shorter processing time of point cloud data. Based on collaborative sampling among several Kinect devices, we analyze the deficiency of current filtering algorithm, and use a novel method of point cloud filtering. Meanwhile, we use Fast Point Feature Histogram (FPFH) algorithm for feature extraction and point cloud registration. Compared with the aligning process using Point Feature Histograms (PFH), it only takes 9[Formula: see text]min when the number of points is about 500,000, shortening the aligning time by 47.1%. To measure the accuracy of the registration, we propose an algorithm which calculates the average distance of the corresponding coincident parts of two point clouds, and we improve the accuracy to an average distance of 0.7[Formula: see text]mm. In the surface reconstruction section, we adopt Ball Pivoting algorithm for surface reconstruction, obtaining image with higher accuracy in a shorter time.


Sign in / Sign up

Export Citation Format

Share Document