intraplantar injection
Recently Published Documents


TOTAL DOCUMENTS

111
(FIVE YEARS 35)

H-INDEX

29
(FIVE YEARS 2)

2022 ◽  
Vol 2022 ◽  
pp. 1-8
Author(s):  
Reham Alfaraj ◽  
Zainab Alabdulsalam ◽  
Zahrah Alfaraj ◽  
Hawraa Alsunni ◽  
Hussain Alhawaj ◽  
...  

Several factors might influence the duration and efficiency of local anesthesia. This study investigates the effect of habitual caffeine intake on lidocaine action and explores the potential involvement of voltage-gated sodium channels in the interaction effect. Wistar rats were divided into four groups: (i) control (Ctrl), (ii) lidocaine intraplantar injection (LIDO), (iii) habitual caffeine intake (CAF), and (iv) lidocaine intraplantar injection and habitual caffeine intake (LIDO + CAF). Behavioral assessments, consisting of a paw pressure test for mechanical pressure sensation and a paw withdrawal latency test for thermal pain sensation, were performed at 0, 30, 60, and 90 minutes following lidocaine injection and after 10, 11, and 12 weeks of CAF intake. Pressure sensation was significantly reduced in the LIDO + CAF group compared with the control group. Moreover, the LIDO + CAF group exhibited reduced sensation compared to LIDO alone group. The LIDO + CAF combination exerted a synergistic effect at 30 and 60 minutes compared with the control. This synergistic effect was noted at 60 minutes (11 weeks of CAF intake) and at 30 minutes (12 weeks of CAF intake) compared with LIDO alone. Augmented thermal pain-relieving effects were observed in the LIDO + CAF group at all weeks compared to the control group and at 10 weeks compared to LIDO alone group. The molecular analysis of dorsal root ganglia suggested that CAF upregulated the mRNA expression of the Nav1.3, Nav1.7, and Nav1.8 sodium channel subtypes. Chronic caffeine consumption potentiates the local anesthetic action of lidocaine in an experimental animal model through mechanisms that involve the upregulation of voltage-gated sodium channels in the dorsal root ganglia.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jasmine Ji ◽  
Qianru He ◽  
Xin Luo ◽  
Sangsu Bang ◽  
Yutaka Matsuoka ◽  
...  

The incidence of chronic pain is especially high in women, but the underlying mechanisms remain poorly understood. Interleukin-23 (IL-23) is a pro-inflammatory cytokine and contributes to inflammatory diseases (e.g., arthritis and psoriasis) through dendritic/T cell signaling. Here we examined the IL-23 involvement in sexual dimorphism of pain, using an optogenetic approach in transgenic mice expressing channelrhodopsin-2 (ChR2) in TRPV1-positive nociceptive neurons. In situ hybridization revealed that compared to males, females had a significantly larger portion of small-sized (100-200 μm2) Trpv1+ neurons in dorsal root ganglion (DRG). Blue light stimulation of a hindpaw of transgenic mice induced intensity-dependent spontaneous pain. At the highest intensity, females showed more intense spontaneous pain than males. Intraplantar injection of IL-23 (100 ng) induced mechanical allodynia in females only but had no effects on paw edema. Furthermore, intraplantar IL-23 only potentiated blue light-induced pain in females, and intrathecal injection of IL-23 also potentiated low-dose capsaicin (500 ng) induced spontaneous pain in females but not males. IL-23 expresses in DRG macrophages of both sexes. Intrathecal injection of IL-23 induced significantly greater p38 phosphorylation (p-p38), a marker of nociceptor activation, in DRGs of female mice than male mice. In THP-1 human macrophages estrogen and chemotherapy co-application increased IL-23 secretion, and furthermore, estrogen and IL-23 co-application, but not estrogen and IL-23 alone, significantly increased IL-17A release. These findings suggest a novel role of IL-23 in macrophage signaling and female-dominant pain, including C-fiber-mediated spontaneous pain. Our study has also provided new insight into cytokine-mediated macrophage-nociceptor interactions, in a sex-dependent manner.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Vinicius M. Gadotti ◽  
Sun Huang ◽  
Gerald W. Zamponi

AbstractT-type calcium channels are known molecular targets of certain phytocannabinoids and endocannabinoids. Here we explored the modulation of Cav3.2 T-type calcium channels by terpenes derived from cannabis plants. A screen of eight commercially available terpenes revealed that camphene and alpha-bisabolol mediated partial, but significant inhibition of Cav3.2 channels expressed in tsA-201 cells, as well as native T-type channels in mouse dorsal root ganglion neurons. Both compounds inhibited peak current amplitude with IC50s in the low micromolar range, and mediated an additional small hyperpolarizing shift in half-inactivation voltage. When delivered intrathecally, both terpenes inhibited nocifensive responses in mice that had received an intraplantar injection of formalin, with alpha-bisabolol showing greater efficacy. Both terpenes reduced thermal hyperalgesia in mice injected with Complete Freund’s adjuvant. This effect was independent of sex, and absent in Cav3.2 null mice, indicating that these compounds mediate their analgesic properties by acting on Cav3.2 channels. Both compounds also inhibited mechanical hypersensitivity in a mouse model of neuropathic pain. Hence, camphene and alpha-bisabolol have a wide spectrum of analgesic action by virtue of inhibiting Cav3.2 T-type calcium channels.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shigufa Kahn Ali ◽  
Samia Ait-Mohand ◽  
Véronique Dumulon-Perreault ◽  
Brigitte Guérin

Abstract Background Imaging diagnosis of inflammation has been challenging for many years. Inflammation imaging agents commonly used in nuclear medicine, such as [67Ga]Ga-citrate and 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG) showed some limitations. The identification of a radiotracer with high specificity and low radiation dose is clinically important. With the commercialization of 68Ge/68Ga generators and the high 68Ga cyclotron production capacity, the study of 68Ga-based tracer for inflammation has increased and shown good potential. In the present work, we report the synthesis of 4HMSA, a new acyclic chelator, and its first investigation for 68Ga complexation and as a new positron emission tomography (PET) imaging agent of inflammation in comparison to [68Ga]Ga-citrate. Results The present experimental studies have shown that the novel [68Ga]Ga-4HMSA is stable allowing imaging of inflammation in a preclinical model of adjuvant- and pathogen-based inflammation involving intraplantar injection of complete Freund’s adjuvant (CFA). We also found that [68Ga]Ga-4HMSA displayed similar uptakes in the inflamed paw than [68Ga]Ga-citrate, which are superior compared to those of contralateral (non-injected) paws at days 1–3 from PET imaging. [68Ga]Ga-citrate accumulated in the upper body of the animal such as the liver, lungs and the heart, whereas the [68Ga]Ga-4HMSA revealed low uptakes in the majority of the organs and was cleared relatively rapidly from blood circulation through the kidneys and bladder. Conclusion The results highlight the potential of [68Ga]Ga-4HMSA as an interesting alternative to [68Ga]Ga-citrate for inflammation imaging by PET. The new PET tracer also offers additional advantages than [68Ga]Ga-citrate in term of dosimetry and lower overall background activity.


2021 ◽  
Vol 22 (21) ◽  
pp. 11730
Author(s):  
Sungkun Chun ◽  
Jun-Ho Lee ◽  
Seo-Yeon Yoon ◽  
Young-Bae Kwon

Our recent study demonstrated that the CC-chemokine ligand 2 (CCL2) present in primary afferent fibers (PAFs) plays an important role in the microglia-dependent neuronal activation associated with zymosan-induced inflammatory pain. The present study was aimed to evaluate whether BD1047 (a prototypical sigma-1 receptor (Sig-1R) antagonist) is capable of modifying elevated levels of inflammation-evoked CCL2 as a peripheral antinociceptive mechanism. In DRG primary culture, zymosan dose-dependently increased CCL2 release from isolectin B4 (IB4)-positive DRG neurons, a process that was inhibited by co-culture with BD1047. Single treatment of BD1047 before intraplantar injection of zymosan in rats significantly reduced thermal hyperalgesia and mechanical hyperalgesia, as well as CCL2 expression in DRG neurons and microglia activation in the spinal dorsal horn. In the Complete Freund’s adjuvant (CFA)-induced inflammation model, repeated administration of BD1047 dramatically attenuated thermal hyperalgesia and mechanical hyperalgesia, and significantly diminished CCL2 immunoreactivity and microglia activation. Notably, CFA-induced inflammation significantly increased Sig-1R immunoreactivity in DRG neurons, which was co-localized with CCL2 and IB4, respectively. Taken together, our results suggest that BD1047′s anti-nociceptive property was substantially mediated by the inhibition of CCL2 release in unmyelinated PAFs and that this may, in turn, have attenuated the spinal microglia activation that is associated with inflammatory pain.


2021 ◽  
Vol 22 (20) ◽  
pp. 11177
Author(s):  
Suk-Yun Kang ◽  
Su Yeon Seo ◽  
Se Kyun Bang ◽  
Seong Jin Cho ◽  
Kwang-Ho Choi ◽  
...  

Transient receptor potential vanilloid 1 (TRPV1) has been implicated in peripheral inflammation and is a mediator of the inflammatory response to various noxious stimuli. However, the interaction between TRPV1 and N-methyl-D-aspartate (NMDA) receptors in the regulation of inflammatory pain remains poorly understood. This study aimed to investigate the analgesic effects of intrathecal administration of capsazepine, a TRPV1 antagonist, on carrageenan-induced inflammatory pain in mice and to identify its interactions with NMDA receptors. Inflammatory pain was induced by intraplantar injection of 2% carrageenan in male ICR mice. To investigate the analgesic effects of capsazepine, pain-related behaviors were evaluated using von Frey filaments and a thermal stimulator placed on the hind paw. TRPV1 expression and NMDA receptor phosphorylation in the spinal cord and glutamate concentration in the spinal cord and serum were measured. Intrathecal treatment with capsazepine significantly attenuated carrageenan-induced mechanical allodynia and thermal hyperalgesia. Moreover, carrageenan-enhanced glutamate and phosphorylation of NMDA receptor subunit 2B in the spinal cord were suppressed by capsazepine administration. These results indicate that TRPV1 and NMDA receptors in the spinal cord are associated with inflammatory pain transmission, and inhibition of TRPV1 may reduce inflammatory pain via NMDA receptors.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Simin Song ◽  
Yuan Xu ◽  
Jiang Liu ◽  
Yadi Jia ◽  
Xiaowei Lin ◽  
...  

Background. Manual acupuncture (MA) with different stimulus frequencies may give rise to varying acupuncture effects. However, the intensity-effect relationship and the underlying mechanisms of MA remain unclear. Objective. To compare the analgesic effects of different frequencies of twirling-rotating MA on rats with complete Freund’s adjuvant- (CFA-) induced pain and explore the underlying mechanism via peripheral sensory nerves. Methods. First, 36 healthy male Wistar rats were randomly divided into 6 groups: control group, 2 r/s MA group (twirling-rotating MA with the frequency of 2 revolutions per second), 4 r/s MA group (twirling-rotating MA with the frequency of 4 revolutions per second), CFA group, CFA + 2 r/s MA group, and CFA + 4 r/s MA group. Rats in three CFA groups received an intraplantar injection of CFA to establish a pain model, while the rats in other three groups received an intraplantar injection of saline. Rats in the 2 r/s MA group and 4 r/s MA group were treated with the corresponding frequencies of twirling-rotating MA on bilateral Zusanli (ST36) and Kunlun (BL60) for 7 days. The ipsilateral nociceptive thresholds (paw withdrawal latency; PWL) were tested to evaluate the analgesic effects. Second, 9 healthy male Wistar rats were randomly divided into 3 groups: control group, 2 r/s MA group, and 4 r/s MA group. The proportion of C-fiber neurons (calcitonin gene-related peptide- (CGRP-) positive neurons) and A-fiber neurons (neurofilament 200- (NF200-) positive neurons) in the dorsal root ganglia (DRG) activated by MA were quantitatively analyzed with the morphological immunofluorescence staining method. Third, 30 healthy male Wistar rats were randomly divided into 6 groups: control group, CFA group, CFA + 2 r/s MA group, CFA + 2 r/s MA + RTX group, CFA + 4 r/s MA group, and CFA  + 4 r/s MA + RTX group. Resiniferatoxin (RTX) was injected into the acupoints before acupuncture. PWL was evaluated to investigate the analgesic effect. Results. Both types of MA treatment increased the PWL of saline-injecting rats and pain model rats. Moreover, 4 r/s MA was superior to 2 r/s MA in increasing PWL. A higher quantity of excited C-fiber neurons was observed following 4 r/s MA than 2 r/s MA, while the reverse was observed in the activation of A-fiber neurons. Following the injection of RTX to inhibit the activation of C-fibers, the analgesic effect of 4 r/s MA reduced significantly but not of 2 r/s MA. Conclusion. Strong MA (4 r/s MA) has superior analgesic effects to gentle MA (2 r/s MA) on CFA model rats, which is associated with C-fiber activation.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254497
Author(s):  
Claudia Interlandi ◽  
Fabio Leonardi ◽  
Filippo Spadola ◽  
Giovanna Lucrezia Costa

The aim of the study was to evaluate the analgesic efficacy of tramadol compared to butorphanol administered locally in ventral surface of the hind paw of rats. Prospective, randomized experimental study; twenty-one adult male Wistar rats were selected. Heart rate (beats minute-1), respiratory rate (breaths minute-1), and paw withdrawal latency (onset of radiant heat until paw withdrawal/seconds) were measured prior (T0) and after (T5, T10, T15, T20) intraplantar injection with saline solution 0,9% (group S), butorphanol 1 mg kg-1 (group B), and tramadol 1 mg kg-1 (group T). Shapiro-Wilk normality test and Friedman test were used to analyze the data expressed by median and range. Statistical significance was set at p < 0.05. Statistical analysis of heart rate showed that there were significant differences between groups at different monitoring times. There were no significant differences in respiratory rate after intraplantar injection in any of the treatment groups. The paw withdrawal latency values at T5, T10, and T15 minutes after intraplantar injection in the group B were significantly higher compared to baseline value and to the values of the other groups. The paw withdrawal latency were no significant changes in the measurements of intragroup in S and T. Intraplantar administration of butorphanol provides a good analgesia and significantly increases paw withdrawal latency compared to tramadol. Intraplantar injection of butorphanol could be useful and safe and safe technique to achieve local analgesia for minor surgical procedures in rats.


2021 ◽  
Vol 12 ◽  
Author(s):  
Isaac Tabiri Henneh ◽  
Francis Ackah Armah ◽  
Elvis Ofori Ameyaw ◽  
Robert Peter Biney ◽  
Ernest Obese ◽  
...  

The diversity offered by natural products has timelessly positioned them as a good source for novel therapeutics for the management of diverse medical conditions, including pain. This study evaluated hydro-ethanolic root bark extract of Ziziphus abyssinica (ZAE) as well as β-amyrin and polpunonic acid isolated from the plant for analgesic property. The study also investigated the mechanism responsible for this action in the extract. The antinociceptive potential of ZAE (30, 100, and 300 mg/kg, p. o.) was assessed using the tail-immersion test (TIT), acetic acid-induced writhing test (AAT), and formalin test (FT). The extract’s effect on acute and chronic musculoskeletal pain was also assessed by administering carrageenan unilaterally into the rat gastrocnemius muscles and measuring pain at 12 h and 10 days for acute and chronic pain respectively. The involvement of pro-inflammatory mediators (prostaglandin E2, bradykinin, TNF-α, and IL-1β) was assessed. The possible pathways mediating the observed analgesic effect of ZAE were further assessed using the antagonists: naloxone, glibenclamide, NG-L-nitro-arginine methyl ester (L-NAME), atropine, nifedipine, and yohimbine in the FT. Also the analgesic effect of two triterpenoid compounds, β-amyrin and polpunonic acid, previously isolated from the plant was assessed using the TIT. The anti-nociceptive activity of ZAE was demonstrated in the TIT by the significant (p &lt; 0.05) increase in tail withdrawal threshold in ZAE-treated mice. ZAE also markedly reduced writhing and paw licking responses in both AAT and FT and significantly (p &lt; 0.05) attenuated both acute and chronic musculoskeletal pain. ZAE also significantly reversed hyperalgesia induced by intraplantar injection of PGE2, bradykinin, TNF-α, and IL-1β. Furthermore, data revealed the involvement of opioidergic, ATP-sensitive K+ channels and NO-cGMP pathways in the analgesic effect of ZAE. Both β-amyrin and polpunonic acid exhibited analgesic activity in the tail suspension test. Our study demonstrates ZAE as an important source of new therapeutic agents for pain management.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Amanda Avona ◽  
Theodore J Price ◽  
Gregory Dussor

Abstract Background Migraine is a complex neurological disorder that is characterized by throbbing head pain, increased sensitivity to light, sound, and touch, as well as nausea and fatigue. It is one of the most common and most disabling disorders globally but mechanisms causing migraine are poorly understood. While head pain is a typical feature of attacks, they also often present with cutaneous hypersensitivity in the rest of the body. In contrast, primary pain conditions in the lower parts of the body are less commonly associated with cephalic hypersensitivity. Previous studies indicate that application of stimuli to the meninges of rodents causes cutaneous facial as well as hindpaw hypersensitivity. In the present study, we asked whether widespread hypersensitivity is a unique feature of dural stimulation or whether body-wide responses occur similarly when the same stimulus is given in other locations. Methods Rats were given the same dose of IL-6 either via dural, intraplantar, subcutaneous, intramuscular, intracisternal, or intrathecal injection. Cutaneous facial and hindpaw allodynia was assessed using Von Frey following injection into each location. Results Hindpaw allodynia was observed following dural and intraplantar injection of IL-6 in both males and females. Hindpaw allodynia was only observed in females following intracisternal and intrathecal IL-6 injections. In contrast, facial allodynia was only observed in either sex following dural and intracisternal injections, which would activate meningeal afferents and the trigeminal nucleus caudalis (TNC), respectively. Conclusions Here we show that while stimulation of upper body regions with IL-6 including the meninges and brainstem can cause widespread hypersensitivity spreading to the paws, similar stimulation of the lower body does not cause the spread of hypersensitivity into the head. These data are consistent with the observations that whole body hypersensitivity is specific to conditions such as migraine where pain is present in the head and they may provide insight into co-morbid pain states associated with migraine.


Sign in / Sign up

Export Citation Format

Share Document