typical distribution
Recently Published Documents


TOTAL DOCUMENTS

84
(FIVE YEARS 22)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
Vol 169 ◽  
pp. 106325
Author(s):  
Xiao-Dong Liu ◽  
Zhu-Qing Liu ◽  
Liang-Chuan Tang ◽  
Yu Han ◽  
Jian Chen ◽  
...  
Keyword(s):  

2021 ◽  
Vol 64 (4) ◽  
pp. 248-255
Author(s):  
Hye Sook Choi

Interstitial lung disease (ILD) is a group of diseases, involving the inflammation and fibrosis of the interstitium of the lung. ILD is classified according to whether or not the cause is known. Known causes of ILDs include inhalation of environmental substances, drugs, infection, and related connective tissue disease. ILD of unknown cause is called idiopathic ILD. The most common form of idiopathic ILD is idiopathic pulmonary fibrosis (IPF). IPF is a chronic progressive fibrosing ILD that results in the decline of lung function with exertional dyspnea, cough, bibasilar inspiratory crackles, and digital clubbing. The incidence of IPF increases with age, and is predominant in men. The most characteristic feature of IPF is a usual interstitial pneumonia (UIP) pattern detected on high-resolution computed tomography (HRCT). The typical HRCT pattern in case of UIP is honeycombing, with or without traction bronchiectasis or bronchiolectasis; this may be superimposed with fine reticulation. The typical distribution of UIP is subpleural, and there is basal predominance with heterogeneity. A definitive diagnosis of IPF in patients with clinically suspected IPF is made when there is presence of a UIP pattern on HRCT. Bronchoalveolar lavage or surgical lung biopsy is not recommended if a UIP pattern is detected on HRCT. However, bronchoalveolar lavage and surgical lung biopsy are required if probable UIP pattern, indeterminate UIP pattern, or an alternative diagnosis pattern are found on HRCT in order to diagnose IPF. A specific combination of HRCT patterns and histopathological patterns requiring multidisciplinary discussion is necessary to rule in IPF or rule it out.


2021 ◽  
Author(s):  
Rongli Liao ◽  
Weibang Sun ◽  
Yongpeng Ma

Abstract Background: It has been recognized that certain amount of habitat disturbance is a prerequisite for occurrence of natural hybridization, yet we are currently still not aware of any studies exploring hybridization and reproductive barriers to those plants preferably occupying disturbed habitats. Buddleja plants (also called butterfly bush) generally grow in disturbed habitat, and several species with hybrid origin only on basis of morphology evidence have been proposed. Results: In the present study, we test the natural hybridization origin hypothesis of B. × wardii in two sympatric populations of three taxa including B. × wardii and its parents (B. alternifolia and B. crispa) plus 4 referenced parental populations, using four nuclear genes and three chloroplast intergenic spacers, as well as with 10 morphological characters. Our results suggest that at both sites B. × wardii was likely to be hybrids between B. alternifolia and B. crispa, and moreover, most of the hybrids examined were confirmed to be F1s. This was further supported by morphology as no transgressive characters were detected. B. crispa was found to be the maternal parent in Bahe (BH) population from the cpDNA. While in the Taji (TJ) population was difficult to distinguish the hybridization direction due to the shared haplotypes of cpDNA between B. alternifolia and B. crispa, we still predicted the similar unidirectional hybridization pattern due to results from cross-specific pollination treatments which supported the “SI x SC rule”. Conclusions: Hybrids mainly consisting of F1s can successfully impede gene flow and thus maintain species boundaries of parental species in its typical distribution of Buddleja, i.e. disturbed habitats.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Yuxing Wang ◽  
Huihui Jin ◽  
Xuan Cai ◽  
Peijun Gong ◽  
Xishan Jiang

2020 ◽  
Vol 4 (1) ◽  
pp. 12
Author(s):  
Vinícius Henrique Farias Brito ◽  
José Carlos de Oliveira ◽  
Fabricio Parra Santilio

Although there currently exists a wide range of voltage regulators that are commercially available, the search for devices with a simpler physical design remains the focus of research studies. Following this line, an electromagnetic voltage regulator (EVR) arrangement has been proposed. The EVR is constituted of an autotransformer that supplies, via discrete taps, a series transformer that injects voltage for regulating the feeder voltage. Even though its operating principle is shown as being similar to that of other devices on the market, the physical arrangement and operating strategy of EVR show novelties which result in properties such as: economic attractiveness, constructive simplicity, and operational reliability. Moreover, when installing voltage regulators, efficacy studies must be carried out to optimize equipment design. In this context, this paper aims at evaluating the factors that influence the effectiveness of the EVR in restoring voltage variations according to the determinations imposed by regulatory agencies. The ultimate goal of this study is to determine the voltage deviation range that the EVR is able to restore. To achieve this goal, a mathematical modeling of the EVR is given and study cases are computationally carried out to investigate its performance when connected to a typical distribution feeder.


2020 ◽  
Vol 31 (4) ◽  
pp. 1040-1045 ◽  
Author(s):  
Topi K Lehtonen ◽  
Arja Kaitala

Abstract Spatial distributions of sexual competitors and potential mating partners have a large impact on sexual selection and mating systems. Typically, such effects are investigated with regard to male aggregations. However, females may also need to compete for mating opportunities. Here, we investigated the consequences of clustering and rival attractiveness on female mate attraction success under field conditions in a nocturnal beetle, the common glowworm, Lampyrus noctiluca. We placed dummy females of two glow intensity (attractiveness) levels either alone or in clusters of varying attractiveness compositions. We found that, by displaying alone rather than in a cluster, females have a higher probability of mating and greater potential to exercise mate choice. Within clusters, females of both attractiveness levels had the highest probability of mating when having neighbors of only the less attractive type. These results show that both the presence and attractiveness of rivals can strongly influence females’ mate attraction. The findings also suggest that the typical distribution of glowing females in the wild is better explained by female than male benefits. Hence, the results highlight the important links between spatial distribution of females, male mate searching, and sexual selection.


Sign in / Sign up

Export Citation Format

Share Document