Stochastic species loss and dispersal limitation drive patterns of spatial and temporal beta diversity of fish assemblages in tropical agroecosystem streams

Hydrobiologia ◽  
2020 ◽  
Vol 847 (18) ◽  
pp. 3829-3843 ◽  
Author(s):  
Jaquelini O. Zeni ◽  
David J. Hoeinghaus ◽  
Camilo A. Roa-Fuentes ◽  
Lilian Casatti
Author(s):  
E Martins Camara ◽  
Tubino Andrade Andrade-Tub ◽  
T Pontes Franco ◽  
LN dos Santos ◽  
AFGN dos Santos ◽  
...  

PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5596 ◽  
Author(s):  
Qiongdao Zhang ◽  
Dong He ◽  
Hua Wu ◽  
Wei Shi ◽  
Cong Chen

Spiders are a functionally important taxon in forest ecosystems, but the determinants of arboreal spider beta diversity are poorly understood at the local scale. We examined spider assemblages in 324 European beech (Fagus sylvatica) trees of varying sizes across three forest stands in Würzburg (Germany) to disentangle the roles of tree architecture, spatial distance, and dispersal capacity on spider turnover across individual trees. A large proportion of tree pairs (66%) showed higher compositional dissimilarity in spider assemblages than expected by chance, suggesting prominent roles of habitat specialization and/or dispersal limitation. Trees with higher dissimilarity in DBH and canopy volume, and to a lesser extent in foliage cover, supported more dissimilar spider assemblages, suggesting that tree architecture comprised a relevant environmental gradient of sorting spider species. Variation partitioning revealed that 28.4% of the variation in beta diversity was jointly explained by tree architecture, spatial distance (measured by principal coordinates of neighbor matrices) and dispersal capacity (quantified by ballooning propensity). Among these, dispersal capacity accounted for a comparable proportion as spatial distance did (6.8% vs. 5.9%). Beta diversity did not significantly differ between high- and low-vagility groups, but beta diversity in species with high vagility was more strongly determined by spatially structured environmental variation. Altogether, both niche specialization, along the environmental gradient defined by tree architecture, and dispersal limitation are responsible for structuring arboreal spider assemblages. High dispersal capacity of spiders appears to reinforce the role of niche-related processes.


Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 680 ◽  
Author(s):  
Liangliang Huang ◽  
Jian Huang ◽  
Zhiqiang Wu ◽  
Yuanmin Mo ◽  
Qi Zou ◽  
...  

Beta diversity partitioning has currently received much attention in research of fish assemblages. However, the main drivers, especially the contribution of spatial and hydrological variables for species composition and beta diversity of fish assemblages are less well studied. To link species composition to multiple abiotic variables (i.e., local environmental variables, hydrological variables, and spatial variables), the relative roles of abiotic variables in shaping fish species composition and beta diversity (i.e., overall turnover, replacement, and nestedness) were investigated in the upstream Lijiang River. Species composition showed significant correlations with environmental, hydrological, and spatial variables, and variation partitioning revealed that the local environmental and spatial variables outperformed hydrological variables, and especially abiotic variables explained a substantial part of the variation in the fish composition (43.2%). The overall species turnover was driven mostly by replacement (87.9% and 93.7% for Sørensen and Jaccard indices, respectively) rather than nestedness. Mantel tests indicated that the overall species turnover (ßSOR and ßJAC) and replacement (ßSIM and ßJTU) were significantly related to hydrological, environmental, and spatial heterogeneity, whereas nestedness (ßSNE or ßJNE) was insignificantly correlated with abiotic variables (P > 0.05). Moreover, the pure effect of spatial variables on overall species turnover (ßSOR and ßJAC) and replacement (ßSIM and ßJTU), and the pure effect of hydrological variables on replacement (ßSIM and ßJTU), were not important (P > 0.05). Our findings demonstrated the relative importance of interactions among environmental, hydrological, and spatial variables in structuring fish assemblages in headwater streams; these fish assemblages tend to be compositionally distinct, rather than nested derivatives of one another. Our results, therefore, indicate that maintaining natural flow dynamics and habitat continuity are of vital importance for conservation of fish assemblages and diversity in headwater streams.


Ecography ◽  
2008 ◽  
Vol 24 (6) ◽  
pp. 645-650
Author(s):  
Anne E. Magurran ◽  
Dawn A. T. Phillip

PLoS ONE ◽  
2013 ◽  
Vol 8 (3) ◽  
pp. e57918 ◽  
Author(s):  
Marti J. Anderson ◽  
Nick Tolimieri ◽  
Russell B. Millar

2020 ◽  
Author(s):  
Ryosuke Nakadai

AbstractTemporal patterns in communities have gained widespread attention recently, to the extent that temporal changes in community composition are now termed “temporal beta-diversity”. Previous studies of beta-diversity have made use of two classes of dissimilarity indices: incidence-based (e.g., Sørensen and Jaccard dissimilarity) and abundance-based (e.g., Bray–Curtis and Ružička dissimilarity). However, in the context of temporal beta-diversity, the persistence of identical individuals and turnover among other individuals within the same species over time have not been considered, despite the fact that both will affect compositional changes in communities. To address this issue, I propose new index concepts for beta-diversity and the relative speed of compositional shifts in relation to individual turnover based on individual identity information. Individual-based beta-diversity indices are novel dissimilarity indices that consider individual identity information to quantitatively evaluate temporal change in individual turnover and community composition. I applied these new indices to individually tracked tree monitoring data in deciduous and evergreen broad-leaved forests across the Japanese archipelago with the objective of quantifying the effect of climate change trends (i.e., rates of change of both annual mean temperature and annual precipitation) on individual turnover and compositional shifts at each site. A new index explored the relative contributions of mortality and recruitment processes to temporal changes in community composition. Clear patterns emerged showing that an increase in the temperature change rate facilitated the relative contribution of mortality components. The relative speed of compositional shift increased with increasing temperature change rates in deciduous forests but decreased with increasing warming rates in evergreen forests. These new concepts provide a way to identify novel and high-resolution temporal patterns in communities.


2021 ◽  
Author(s):  
Ryosuke Nakadai

AbstractBeta-diversity was originally defined spatially, i.e., as variation in community composition among sites in a region. However, the concept of beta-diversity has since been expanded to temporal contexts. This is referred to as “temporal beta-diversity”, and most approaches are simply an extension of spatial beta-diversity.The persistence and turnover of individuals over time is a unique feature of temporal beta-diversity. Nakadai (2020) introduced the “individual-based beta-diversity” concept, and provided novel indices to evaluate individual turnover and compositional shift by comparing individual turnover between two periods at a given site. However, the proposed individual-based indices are applicable only to pairwise dissimilarity, not to multiple-temporal (or more generally, multiple-unit) dissimilarity.Here, individual-based beta-diversity indices are extended to multiple-unit cases.To demonstrate the usage the properties of these indices compared to average pairwise measures, I applied them to a dataset for a permanent 50-ha forest dynamics plot on Barro Colorado Island in Panama.Information regarding “individuals” is generally missing from community ecology and biodiversity studies of temporal dynamics. In this context, the method proposed here is expected to be useful for addressing a wide range of research questions regarding temporal changes in biodiversity, especially studies using individual-tracked forest monitoring data.


2021 ◽  
Vol 9 ◽  
Author(s):  
Joseph P. Wayman ◽  
Jonathan P. Sadler ◽  
Thomas A. M. Pugh ◽  
Thomas E. Martin ◽  
Joseph A. Tobias ◽  
...  

Spatial variation in community composition may be driven by a variety of processes, including environmental filtering and dispersal limitation. While work has been conducted on the relative importance of these processes on various taxa and at varying resolutions, tests using high-resolution empirical data across large spatial extents are sparse. Here, we use a dataset on the presence/absence of breeding bird species collected at the 10 km × 10 km scale across the whole of Britain. Pairwise spatial taxonomic and functional beta diversity, and the constituent components of each (turnover and nestedness/richness loss or gain), were calculated alongside two other measures of functional change (mean nearest taxon distance and mean pairwise distance). Predictor variables included climate and land use measures, as well as a measure of elevation, human influence, and habitat diversity. Generalized dissimilarity modeling was used to analyze the contribution of each predictor variable to variation in the different beta diversity metrics. Overall, we found that there was a moderate and unique proportion of the variance explained by geographical distance per se, which could highlight the role of dispersal limitation in community dissimilarity. Climate, land use, and human influence all also contributed to the observed patterns, but a large proportion of the explained variance in beta diversity was shared between these variables and geographical distance. However, both taxonomic nestedness and functional nestedness were uniquely predicted by a combination of land use, human influence, elevation, and climate variables, indicating a key role for environmental filtering. These findings may have important conservation implications in the face of a warming climate and future land use change.


Sign in / Sign up

Export Citation Format

Share Document