discrete galerkin method
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 3)

H-INDEX

8
(FIVE YEARS 0)

2021 ◽  
Vol 63 ◽  
pp. 469-492
Author(s):  
Pouria Assari ◽  
Fatemeh Asadi-Mehregan ◽  
Mehdi Dehghan

The main goal of this paper is to solve a class of Darboux problems by converting them into the two-dimensional nonlinear Volterra integral equation of the second kind. The scheme approximates the solution of these integral equations using the discrete Galerkin method together with local radial basis functions, which use a small set of data instead of all points in the solution domain. We also employ the Gauss–Legendre integration rule on the influence domains of shape functions to compute the local integrals appearing in the method. Since the scheme is constructed on a set of scattered points and does not require any background meshes, it is meshless. The error bound and the convergence rate of the presented method are provided. Some illustrative examples are included to show the validity and efficiency of the new technique. Furthermore, the results obtained demonstrate that this method uses much less computer memory than the method established using global radial basis functions. doi:10.1017/S1446181121000377


2021 ◽  
pp. 1-24
Author(s):  
P. ASSARI ◽  
F. ASADI-MEHREGAN ◽  
M. DEHGHAN

Abstract The main goal of this paper is to solve a class of Darboux problems by converting them into the two-dimensional nonlinear Volterra integral equation of the second kind. The scheme approximates the solution of these integral equations using the discrete Galerkin method together with local radial basis functions, which use a small set of data instead of all points in the solution domain. We also employ the Gauss–Legendre integration rule on the influence domains of shape functions to compute the local integrals appearing in the method. Since the scheme is constructed on a set of scattered points and does not require any background meshes, it is meshless. The error bound and the convergence rate of the presented method are provided. Some illustrative examples are included to show the validity and efficiency of the new technique. Furthermore, the results obtained demonstrate that this method uses much less computer memory than the method established using global radial basis functions.


2021 ◽  
Author(s):  
Mostafa Abounouh ◽  
Hassan Al-Moatassime ◽  
Sabah Kaouri ◽  
Youssef Ouakrim

In this chapter, we are interested in the numerical resolution of the mixed BBM-KdV equation defined in unbounded domain. Boundary Element Method (BEM) are introduced to truncate the equation into a considered bounded domain. BEM uses domain decomposition techniques to construct Boundary Condition (BC) as transmission between the bounded domain and its complementary. We then present a suitable approximation of these BC using Discrete Galerkin Method. Numerical simulations are made to show the efficiency of these BC. We also compare with another method that truncates the equation from unbounded to bounded domain, called Non Standard Boundary Conditions (NSBC) which introduces new variables to catch information at the boundary and compose a system to connect all these variables in the bounded domain. Further discussions are made to highlight the advantages of each method as well as the difficulties encountered in the numerical resolution.


2018 ◽  
Vol 44 (5) ◽  
pp. 1601-1626 ◽  
Author(s):  
Urs Vögeli ◽  
Khadijeh Nedaiasl ◽  
Stefan A. Sauter

2011 ◽  
Vol 2011 ◽  
pp. 1-20 ◽  
Author(s):  
Yunying Zheng ◽  
Zhengang Zhao

The spatial transport process in fractal media is generally anomalous. The space-fractional advection-diffusion equation can be used to characterize such a process. In this paper, a fully discrete scheme is given for a type of nonlinear space-fractional anomalous advection-diffusion equation. In the spatial direction, we use the finite element method, and in the temporal direction, we use the modified Crank-Nicolson approximation. Here the fractional derivative indicates the Caputo derivative. The error estimate for the fully discrete scheme is derived. And the numerical examples are also included which are in line with the theoretical analysis.


Sign in / Sign up

Export Citation Format

Share Document