scholarly journals Domination and Independent Domination in Hexagonal Systems

Mathematics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 67
Author(s):  
Norah Almalki ◽  
Pawaton Kaemawichanurat

A vertex subset D of G is a dominating set if every vertex in V(G)∖D is adjacent to a vertex in D. A dominating set D is independent if G[D], the subgraph of G induced by D, contains no edge. The domination number γ(G) of a graph G is the minimum cardinality of a dominating set of G, and the independent domination number i(G) of G is the minimum cardinality of an independent dominating set of G. A classical work related to the relationship between γ(G) and i(G) of a graph G was established in 1978 by Allan and Laskar. They proved that every K1,3-free graph G satisfies γ(G)=i(H). Hexagonal systems (2 connected planar graphs whose interior faces are all hexagons) have been extensively studied as they are used to present bezenoid hydrocarbon structures which play an important role in organic chemistry. The domination numbers of hexagonal systems have been studied continuously since 2018 when Hutchinson et al. posted conjectures, generated from a computer program called Conjecturing, related to the domination numbers of hexagonal systems. Very recently in 2021, Bermudo et al. answered all of these conjectures. In this paper, we extend these studies by considering the relationship between the domination number and the independent domination number of hexagonal systems. Although every hexagonal system H with at least two hexagons contains K1,3 as an induced subgraph, we find many classes of hexagonal systems whose domination number is equal to an independent domination number. However, we establish the existence of a hexagonal system H such that γ(H)<i(H) with the prescribed number of hexagons.

2015 ◽  
Vol 23 (2) ◽  
pp. 187-199
Author(s):  
C. Natarajan ◽  
S.K. Ayyaswamy

Abstract Let G = (V;E) be a graph. A set S ⊂ V (G) is a hop dominating set of G if for every v ∈ V - S, there exists u ∈ S such that d(u; v) = 2. The minimum cardinality of a hop dominating set of G is called a hop domination number of G and is denoted by γh(G). In this paper we characterize the family of trees and unicyclic graphs for which γh(G) = γt(G) and γh(G) = γc(G) where γt(G) and γc(G) are the total domination and connected domination numbers of G respectively. We then present the strong equality of hop domination and hop independent domination numbers for trees. Hop domination numbers of shadow graph and mycielskian graph of graph are also discussed.


10.37236/1085 ◽  
2006 ◽  
Vol 13 (1) ◽  
Author(s):  
Michael A. Henning ◽  
Anders Yeo

A set $M$ of edges of a graph $G$ is a matching if no two edges in $M$ are incident to the same vertex. The matching number of $G$ is the maximum cardinality of a matching of $G$. A set $S$ of vertices in $G$ is a total dominating set of $G$ if every vertex of $G$ is adjacent to some vertex in $S$. The minimum cardinality of a total dominating set of $G$ is the total domination number of $G$. If $G$ does not contain $K_{1,3}$ as an induced subgraph, then $G$ is said to be claw-free. We observe that the total domination number of every claw-free graph with minimum degree at least three is bounded above by its matching number. In this paper, we use transversals in hypergraphs to characterize connected claw-free graphs with minimum degree at least three that have equal total domination and matching numbers.


Mathematics ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 820
Author(s):  
Pu Wu ◽  
Huiqin Jiang ◽  
Sakineh Nazari-Moghaddam ◽  
Seyed Mahmoud Sheikholeslami ◽  
Zehui Shao ◽  
...  

A set S ⊆ V ( G ) in a graph G is a dominating set if every vertex of G is either in S or adjacent to a vertex of S . A dominating set S is independent if any pair of vertices in S is not adjacent. The minimum cardinality of an independent dominating set on a graph G is called the independent domination number i ( G ) . A graph G is independent domination stable if the independent domination number of G remains unchanged under the removal of any vertex. In this paper, we study the basic properties of independent domination stable graphs, and we characterize all independent domination stable trees and unicyclic graphs. In addition, we establish bounds on the order of independent domination stable trees.


2019 ◽  
Vol 13 (04) ◽  
pp. 2050071
Author(s):  
Derya Doğan Durgun ◽  
Berna Lökçü

Let [Formula: see text] be a graph and [Formula: see text] A dominating set [Formula: see text] is a set of vertices such that each vertex of [Formula: see text] is either in [Formula: see text] or has at least one neighbor in [Formula: see text]. The minimum cardinality of such a set is called the domination number of [Formula: see text], [Formula: see text] [Formula: see text] strongly dominates [Formula: see text] and [Formula: see text] weakly dominates [Formula: see text] if (i) [Formula: see text] and (ii) [Formula: see text] A set [Formula: see text] is a strong-dominating set, shortly sd-set, (weak-dominating set, shortly wd-set) of [Formula: see text] if every vertex in [Formula: see text] is strongly (weakly) dominated by at least one vertex in [Formula: see text]. The strong (weak) domination number [Formula: see text] of [Formula: see text] is the minimum cardinality of an sd-set (wd-set). In this paper, we present weak and strong domination numbers of thorn graphs.


Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 194 ◽  
Author(s):  
Abel Cabrera-Martínez ◽  
Juan Carlos Hernández-Gómez ◽  
Ernesto Parra-Inza ◽  
José María Sigarreta Almira

A set of vertices of a graph G is a total dominating set if every vertex of G is adjacent to at least one vertex in such a set. We say that a total dominating set D is a total outer k-independent dominating set of G if the maximum degree of the subgraph induced by the vertices that are not in D is less or equal to k − 1 . The minimum cardinality among all total outer k-independent dominating sets is the total outer k-independent domination number of G. In this article, we introduce this parameter and begin with the study of its combinatorial and computational properties. For instance, we give several closed relationships between this novel parameter and other ones related to domination and independence in graphs. In addition, we give several Nordhaus–Gaddum type results. Finally, we prove that computing the total outer k-independent domination number of a graph G is an NP-hard problem.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
T. Tamizh Chelvam ◽  
T. Asir

A subset D of the vertex set of a graph G, is a dominating set if every vertex in V−D is adjacent to at least one vertex in D. The domination number γ(G) is the minimum cardinality of a dominating set of G. A subset of V−D, which is also a dominating set of G is called an inverse dominating set of G with respect to D. The inverse domination number γ′(G) is the minimum cardinality of the inverse dominating sets. Domke et al. (2004) characterized connected graphs G with γ(G)+γ′(G)=n, where n is the number of vertices in G. It is the purpose of this paper to give a complete characterization of graphs G with minimum degree at least two and γ(G)+γ′(G)=n−1.


10.37236/847 ◽  
2008 ◽  
Vol 15 (1) ◽  
Author(s):  
Odile Favaron

A dominating set $S$ of a graph $G$ is a global (strong) defensive alliance if for every vertex $v\in S$, the number of neighbors $v$ has in $S$ plus one is at least (greater than) the number of neighbors it has in $V\setminus S$. The dominating set $S$ is a global (strong) offensive alliance if for every vertex $v\in V\setminus S$, the number of neighbors $v$ has in $S$ is at least (greater than) the number of neighbors it has in $V\setminus S$ plus one. The minimum cardinality of a global defensive (strong defensive, offensive, strong offensive) alliance is denoted by $\gamma_a(G)$ ($\gamma_{\hat a}(G)$, $\gamma_o(G)$, $\gamma_{\hat o}(G))$. We compare each of the four parameters $\gamma_a, \gamma_{\hat a}, \gamma_o, \gamma_{\hat o}$ to the independent domination number $i$. We show that $i(G)\le \gamma ^2_a(G)-\gamma_a(G)+1$ and $i(G)\le \gamma_{\hat{a}}^2(G)-2\gamma_{\hat{a}}(G)+2$ for every graph; $i(G)\le \gamma ^2_a(G)/4 +\gamma_a(G)$ and $i(G)\le \gamma_{\hat{a}}^2(G)/4 +\gamma_{\hat{a}}(G)/2$ for every bipartite graph; $i(G)\le 2\gamma_a(G)-1$ and $i(G)=3\gamma_{\hat{a}}(G)/2 -1$ for every tree and describe the extremal graphs; and that $\gamma_o(T)\le 2i(T)-1$ and $i(T)\le \gamma_{\hat o}(T)-1$ for every tree. We use a lemma stating that $\beta(T)+2i(T)\ge n+1$ in every tree $T$ of order $n$ and independence number $\beta(T)$.


Mathematics ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 1010
Author(s):  
Fang Miao ◽  
Wenjie Fan ◽  
Mustapha Chellali ◽  
Rana Khoeilar ◽  
Seyed Mahmoud Sheikholeslami ◽  
...  

A vertex v of a graph G = ( V , E ) , ve-dominates every edge incident to v, as well as every edge adjacent to these incident edges. A set S ⊆ V is a double vertex-edge dominating set if every edge of E is ve-dominated by at least two vertices of S. The double vertex-edge domination number γ d v e ( G ) is the minimum cardinality of a double vertex-edge dominating set in G. A subset S ⊆ V is a total dominating set (respectively, a 2-dominating set) if every vertex in V has a neighbor in S (respectively, every vertex in V - S has at least two neighbors in S). The total domination number γ t ( G ) is the minimum cardinality of a total dominating set of G, and the 2-domination number γ 2 ( G ) is the minimum cardinality of a 2-dominating set of G . Krishnakumari et al. (2017) showed that for every triangle-free graph G , γ d v e ( G ) ≤ γ 2 ( G ) , and in addition, if G has no isolated vertices, then γ d v e ( G ) ≤ γ t ( G ) . Moreover, they posed the problem of characterizing those graphs attaining the equality in the previous bounds. In this paper, we characterize all trees T with γ d v e ( T ) = γ t ( T ) or γ d v e ( T ) = γ 2 ( T ) .


Author(s):  
Purnima Gupta ◽  
Deepti Jain

In a graph [Formula: see text], a set [Formula: see text] is a [Formula: see text]-point set dominating set (in short 2-psd set) of [Formula: see text] if for every subset [Formula: see text] there exists a nonempty subset [Formula: see text] containing at most two vertices such that the induced subgraph [Formula: see text] is connected in [Formula: see text]. The [Formula: see text]-point set domination number of [Formula: see text], denoted by [Formula: see text], is the minimum cardinality of a 2-psd set of [Formula: see text]. The main focus of this paper is to find the value of [Formula: see text] for a separable graph and thereafter computing [Formula: see text] for some well-known classes of separable graphs. Further we classify the set of all 2-psd sets of a separable graph into six disjoint classes and study the existence of minimum 2-psd sets in each class.


2020 ◽  
Vol 12 (05) ◽  
pp. 2050062
Author(s):  
Murat Erşen Berberler ◽  
Onur Uğurlu ◽  
Zeynep Nihan Berberler

Let [Formula: see text] be a graph. A subset [Formula: see text] of vertices is a dominating set if every vertex in [Formula: see text] is adjacent to at least one vertex of [Formula: see text]. The domination number is the minimum cardinality of a dominating set. Let [Formula: see text]. Then, [Formula: see text] strongly dominates [Formula: see text] and [Formula: see text] weakly dominates [Formula: see text] if (i) [Formula: see text] and (ii) [Formula: see text]. A subset [Formula: see text] of [Formula: see text] is a strong (weak) dominating set of [Formula: see text] if every vertex in [Formula: see text] is strongly (weakly) dominated by at least one vertex in [Formula: see text]. The strong (weak) domination number of [Formula: see text] is the minimum cardinality of a strong (weak) dominating set. A set [Formula: see text] is an independent (or stable) set if no two vertices of [Formula: see text] are adjacent. The independent domination number of [Formula: see text] (independent strong domination number, independent weak domination number, respectively) is the minimum size of an independent dominating set (independent strong dominating set, independent weak dominating set, respectively) of [Formula: see text]. In this paper, mathematical models are developed for the problems of independent domination and independent strong (weak) domination of a graph. Then test problems are solved by the GAMS software, the optima and execution times are implemented. To the best of our knowledge, this is the first mathematical programming formulations for the problems, and computational results show that the proposed models are capable of finding optimal solutions within a reasonable amount of time.


Sign in / Sign up

Export Citation Format

Share Document