maud rise
Recently Published Documents


TOTAL DOCUMENTS

91
(FIVE YEARS 29)

H-INDEX

22
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Alexander Mchedlishvili ◽  
Gunnar Spreen ◽  
Christian Melsheimer ◽  
Marcus Huntemann

Abstract. The Weddell Sea Polynya is an anomalous large opening in the Antarctic sea ice above the Maud Rise seamount. After 40 years of absence, it fully opened again on 13 September, 2017, and lasted until melt; staying open for a total of 80 days. 2017, however, actually was not the only year the imprint of the polynya could be identified. By investigating sea ice thickness (SIT) data retrieved from the satellite microwave sensors Soil Moisture Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP), we have isolated an anomaly of thin sea ice spanning an area comparable to the polynya of 2017 over Maud Rise occurring in September 2018. In this paper, we look at sea ice above Maud Rise in August and September of 2017 and 2018 as well as all years from 2010 until 2020 in a 11-year time series. Using the ERA5 surface wind reanalysis data, we present the strong impact storm activity has on sea ice and help consolidate the theory that the Weddell Sea Polynya, in addition to oceanographic effects, is subject to direct atmospheric forcing. Based on the results presented we propose that the Weddell Sea Polynya, rather than being a binary system with one principal cause, is a dynamic process caused by various different preconditioning factors that must occur simultaneously for it to occur. Moreover, we show that rather than an abrupt stop to anomalous activity atop Maud Rise in 2017, the very next year shows signs of polynya-favourable activity that, although insufficient, was present in the region. This effect, as will be shown in the 11-year SMOS record, is not unique to 2018 and similar anomalies are identified in 2010, 2013 and 2014. It is demonstrated that L-band microwave radiometry from the SMOS and SMAP satellites can provide additional useful information, which helps to better understand dynamic sea ice processes like polynya events, in comparison to if satellite sea ice concentration products would be used alone.


Ocean Science ◽  
2021 ◽  
Vol 17 (1) ◽  
pp. 335-350
Author(s):  
Daan Boot ◽  
René M. van Westen ◽  
Henk A. Dijkstra

Abstract. Maud Rise polynyas (MRPs) form due to deep convection, which is caused by static instabilities of the water column. Recent studies with the Community Earth System Model (CESM) have indicated that a multidecadal varying heat accumulation in the subsurface layer occurs prior to MRP formation due to the heat transport over the Weddell Gyre. In this study, a conceptual MRP box model, forced with CESM data, is used to investigate the role of this subsurface heat accumulation in MRP formation. Cases excluding and including multidecadal varying subsurface heat and salt fluxes are considered, and multiple polynya events are only simulated in the cases where subsurface fluxes are included. The dominant frequency for MRP events in these results, approximately the frequency of the subsurface heat and salt accumulation, is still visible in cases where white noise is added to the freshwater flux. This indicates the importance and dominance of the subsurface heat accumulation in MRP formation.


2021 ◽  
pp. 1-58
Author(s):  
Prajvala Kurtakoti ◽  
Milena Veneziani ◽  
Achim Stössel ◽  
Wilbert Weijer ◽  
Mathew Maltrud

AbstractLarger Weddell Sea polynyas (WSPs), differentiated in this study from the smaller Maud Rise Polynyas (MRPs), forming to the east of the prime meridian in the proximity of the Maud Rise seamount, have last been observed in the 1970s. We investigate WSPs that grow realistically out of MRPs in a high-resolution (HR) preindustrial simulation with the Energy Exascale Earth System Model version 0.1. The formation of MRPs requires HR to simulate the detailed flow around Maud Rise, while the realistic formation of WSPs requires a model to produce MRPs. Furthermore, WSPs tend to follow periods of a prolonged build-up of a heat reservoir at depth and weakly negative wind-stress curl in association with the core of the southern hemisphere westerlies at an anomalously northern position. While this scenario also leads to drier conditions over the central Weddell Sea, which some literature claims to be a necessary condition for the formation of WSPs, our model results indicate that open-ocean polynyas do not occur during periods of weakly negative wind-stress curl despite drier atmospheric conditions. Our study supports the hypothesis noted in earlier studies that a shift from a weakly negative to a strongly negative wind-stress curl over the Weddell Sea is a prerequisite for WSPs to form, together with a large heat reservoir at depth. However, the ultimate trigger is a pronounced MRP; whose associated convection creates high surface salinity anomalies that propagate westward with the flow of the Weddell Gyre. If large enough, these anomalies trigger the formation of a WSP and a pulse of newly formed Antarctic Bottom Water.


Ocean Science ◽  
2020 ◽  
Vol 16 (6) ◽  
pp. 1443-1457
Author(s):  
René M. van Westen ◽  
Henk A. Dijkstra

Abstract. In this paper, we consider Maud Rise polynya formation in a long (250-year) high-resolution (ocean 0.1∘, atmosphere 0.5∘ horizontal model resolution) of the Community Earth System Model. We find a dominant multidecadal timescale in the occurrence of these Maud Rise polynyas. Analysis of the results leads us to the interpretation that a preferred timescale can be induced by the variability of the Weddell Gyre, previously identified as the Southern Ocean Mode. The large-scale pattern of heat content variability associated with the Southern Ocean Mode modifies the stratification in the Maud Rise region and leads to a preferred timescale in convection through preconditioning of the subsurface density and consequently to polynya formation.


2020 ◽  
Vol 43 ◽  
pp. 21-37 ◽  
Author(s):  
FW Shabangu ◽  
RK Andrew ◽  
D Yemane ◽  
KP Findlay

Descriptions of seasonal occurrence and behaviour of Antarctic blue and fin whales in the Southern Ocean are of pivotal importance for the effective conservation and management of these endangered species. We used an autonomous acoustic recorder to collect bioacoustic data from January through September 2014 to describe the seasonal occurrence, behaviour and detection ranges of Antarctic blue and fin whale calls off the Maud Rise, Antarctica. From 2479 h of recordings, we detected D- and Z-calls plus the 27 Hz chorus of blue whales, the 20 and 99 Hz pulses of fin whales and the 18-28 Hz chorus of blue and fin whales. Blue whale calls were detected throughout the hydrophone deployment period with a peak occurrence in February, indicating continuous presence of whales in a broad Southern Ocean area (given the modelled detection ranges). Fin whale calls were detected from January through July when sea ice was present on the latter dates. No temporal segregation in peaks of diel calling rates of blue and fin whales was observed in autumn, but a clear temporal segregation was apparent in summer. Acoustic propagation models suggest that blue and fin whale calls can be heard as far as 1700 km from the hydrophone position in spring. Random forest models ranked month of the year as the most important predictor of call occurrence and call rates (i.e. behaviour) for these whales. Our work highlights areas around the Maud Rise as important habitats for blue and fin whales in the Southern Ocean.


2020 ◽  
Author(s):  
Daan Boot ◽  
René M. Van Westen ◽  
Henk A. Dijkstra

Abstract. Maud Rise Polynyas (MRPs) form due to deep convection, which is caused by static instability of the water column. Recent studies with the Community Earth System Model (CESM) have indicated that a multidecadal varying heat accumulation in the subsurface layer occurs prior to MRP formation due to the heat transport over the Weddell gyre. In this study, a conceptual MRP box model, forced with CESM data, is used to investigate the role of this subsurface heat accumulation in MRP formation. Cases excluding and including multidecadal varying subsurface heat and salt fluxes are considered and multiple polynya events are only simulated in the cases where subsurface fluxes are included. The dominant frequency for MRP events in these results, approximately the frequency of the subsurface heat and salt accumulation, is still visible in cases where white noise is added to the freshwater flux. This indicates the importance and dominance of the subsurface heat accumulation in MRP formation.


Sign in / Sign up

Export Citation Format

Share Document