malformation of cortical development
Recently Published Documents


TOTAL DOCUMENTS

88
(FIVE YEARS 50)

H-INDEX

14
(FIVE YEARS 3)

2021 ◽  
Vol 12 (3) ◽  
pp. 93-100
Author(s):  
V. S. Khalilov ◽  
A. N. Kislyakov ◽  
T. V. Basalay ◽  
A. V. Levov ◽  
A. A. Kholin

Recently, in the scientist community of specialists dealing with structural epilepsy, it has been noticed an increasing interest in a special form of cortical development disorder not to be included in the ILAE Classification of the epilepsies the 2017 revision. It is so-called mild malformation of cortical development with oligodendroglial hyperplasia and epilepsy (MOGHE). There are a number of publications devoted to the neuroimaging features of MOGHE, which are possible to distinguish from other epileptogenic substrates in comparisons with clinical/anamnestic data and dynamic observation. Our paper describes the case of a patient under 6 years suffering from pharmacoresistant epilepsy with histologically confirmed MOGHE, and having undergone the procedure of epileptic surgery. MRI showed an increased intensity of the T2/FLAIR signal from the white matter in combination with signs of laminar hyperintensivity, regional sulcation disturbance, smoothness of gray-white matter demarcation in the right frontal lobe. A signal intensification from the white matter with the formation similarity of the «transmantl» sign and further pronounced smoothness of the gray-white matter demarcation was observed on dynamic MRI. These changes were estimated as focal cortical dysplasia. Pre-surgical examination revealed a correlation of epileptiform activity with MRI changes. The subtotal resection of the right frontal lobe and the morphological conclusion established the presence of MOGHE was performed.


Author(s):  
S. Subramanian ◽  
A. Biswas ◽  
C.A.P.F. Alves ◽  
S.V. Sudhakar ◽  
K.V. Shekdar ◽  
...  

2021 ◽  
Vol 9 (12) ◽  
Author(s):  
Vikash Jaiswal ◽  
Muhammad Hanif ◽  
Zouina Sarfraz ◽  
Gaurav Nepal ◽  
Sidra Naz ◽  
...  

2021 ◽  
Author(s):  
Lena H Nguyen ◽  
Youfen Xu ◽  
Travorn Mahadeo ◽  
Longbo Zhang ◽  
Tiffany V Lin ◽  
...  

Hyperactivation of mTOR signaling during fetal neurodevelopment alters neuron structure and function, leading to focal malformation of cortical development (FMCD) and intractable epilepsy. Recent evidence suggests increased cap-dependent translation downstream of mTOR contributes to FMCD formation and seizures. However, whether reducing overactive translation once the developmental pathologies are established reverses neuronal abnormalities and seizures is unknown. Here, we found that the translational repressor 4E-BP1, which is inactivated by mTOR-mediated phosphorylation, is hyperphosphorylated in patient FMCD tissue and in a mouse model of FMCD. Expressing constitutive active 4E-BP1 to repress aberrant translation in juvenile mice with FMCD reduced neuronal cytomegaly and corrected several electrophysiological alterations, including depolarized resting membrane potential, irregular firing pattern, and aberrant HCN4 channel expression. This was accompanied by improved cortical spectral activity and decreased seizures. Although mTOR controls multiple pathways, our study shows that targeting 4E-BP1-mediated translation alone is sufficient to alleviate neuronal dysfunction and ongoing epilepsy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Noa Cohen ◽  
Yoram Ebrahimi ◽  
Mordekhay Medvedovsky ◽  
Guy Gurevitch ◽  
Orna Aizenstein ◽  
...  

Polymicrogyria (PMG) is a common malformation of cortical development associated with a higher susceptibility to epileptic seizures. Seizures secondary to PMG are characterized by difficult-to-localize cerebral sources due to the complex and widespread lesion structure. Tracing the dynamics of interictal epileptiform discharges (IEDs) in patients with epilepsy has been shown to reveal the location of epileptic activity sources, crucial for successful treatment in cases of focal drug-resistant epilepsy. In this case series IED dynamics were evaluated with simultaneous EEG-fMRI recordings in four patients with unilateral peri-sylvian polymicrogyria (PSPMG) by tracking BOLD activations over time: before, during and following IED appearance on scalp EEG. In all cases, focal BOLD activations within the lesion itself preceded the activity associated with the time of IED appearance on EEG, which showed stronger and more widespread activations. We therefore propose that early hemodynamic activity corresponding to IEDs may hold important localizing information potentially leading to the cerebral sources of epileptic activity. IEDs are suggested to develop within a small area in the PSPMG lesion with structural properties obscuring the appearance of their electric field on the scalp and only later engage widespread structures which allow the production of large currents which are recognized as IEDs on EEG.


PLoS Biology ◽  
2021 ◽  
Vol 19 (5) ◽  
pp. e3001279
Author(s):  
Martina Proietti Onori ◽  
Linda M. C. Koene ◽  
Carmen B. Schäfer ◽  
Mark Nellist ◽  
Marcel de Brito van Velze ◽  
...  

Hyperactivation of the mammalian target of rapamycin (mTOR) pathway can cause malformation of cortical development (MCD) with associated epilepsy and intellectual disability (ID) through a yet unknown mechanism. Here, we made use of the recently identified dominant-active mutation in Ras Homolog Enriched in Brain 1 (RHEB), RHEBp.P37L, to gain insight in the mechanism underlying the epilepsy caused by hyperactivation of the mTOR pathway. Focal expression of RHEBp.P37L in mouse somatosensory cortex (SScx) results in an MCD-like phenotype, with increased mTOR signaling, ectopic localization of neurons, and reliable generalized seizures. We show that in this model, the mTOR-dependent seizures are caused by enhanced axonal connectivity, causing hyperexcitability of distally connected neurons. Indeed, blocking axonal vesicle release from the RHEBp.P37L neurons alone completely stopped the seizures and normalized the hyperexcitability of the distally connected neurons. These results provide new evidence of the extent of anatomical and physiological abnormalities caused by mTOR hyperactivity, beyond local malformations, which can lead to generalized epilepsy.


2021 ◽  
pp. 113776
Author(s):  
Aliénor Ragot ◽  
Heiko J. Luhmann ◽  
Matthias Dipper-Wawra ◽  
Uwe Heinemann ◽  
Martin Holtkamp ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document