shock oscillation
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 11)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Vol 62 (10) ◽  
Author(s):  
A. D’Aguanno ◽  
F. F. J. Schrijer ◽  
B. W. van Oudheusden

Abstract Transonic buffet behaviour of the supercritical airfoil OAT15A was investigated experimentally at flow conditions $$Ma=0.7$$ M a = 0.7 and $$\alpha =3.5^\circ $$ α = 3 . 5 ∘ , using schlieren and particle image velocimetry (PIV). The general behaviour of the buffet cycle was characterised with short-exposure schlieren visualisation and phase-averaged PIV measurements. A spectral analysis showed that the shock oscillation occurs with a dominant contribution at 160 Hz (St = 0.07, in good agreement with the literature) and between 25 and 55 % of the chord of the airfoil. Proper Orthogonal Decomposition (POD) was applied to the PIV data to extract the main modes connected with buffet. It is found that the first three most energetic modes capture around 65 % of the total fluctuating kinetic energy. The first and the third modes have a main frequency peak at 160 Hz and are well representing the separated area and the shock oscillation. The second mode was, instead, associated with an asymmetrical behaviour of the separated area and of the shear layer and displays a main peak at 320 Hz, being double the main buffet cycle frequency. Finally, it was shown that by using the 11 most energetic POD modes, an accurate reduced-order model (ROM) is obtained, which when subtracted from the instantaneous velocity fields allows the visualisation of the small-scale structures present in the flow, such as the upstream travelling waves (UTWs) and the vortex shedding in the separated area near the trailing edge. The analysis allowed to estimate the velocity of the UTWs, obtaining values in good agreement with the literature. In contrast, the analysis of the vortex dynamics in the trailing edge area revealed that vortices shed at the shock foot, which convect downstream in an area detached from the airfoil surface, cannot be considered responsible for the creation of UTWs in view of the mismatch in frequency of the two phenomena. Graphic abstract


Aerospace ◽  
2021 ◽  
Vol 8 (9) ◽  
pp. 268
Author(s):  
Kung-Ming Chung ◽  
Kao-Chun Su ◽  
Keh-Chin Chang

A convex corner models the upper surface of a deflected flap and shock-induced boundary layer separation occurs at transonic speeds. This study uses micro-vortex generators (MVGs) for flow control. An array of MVGs (counter-rotating vane type, ramp type and co-rotating vane type) with a height of 20% of the thickness of the incoming boundary layer is installed upstream of a convex corner. The surface pressure distributions are similar regardless of the presence of MVGs. They show mild upstream expansion, a strong favorable pressure gradient near the corner’s apex and downstream compression. A corrugated surface oil flow pattern is observed in the presence of MVGs and there is an onset of compression moving downstream. The counter-rotating vane type MVGs produce a greater reduction in peak pressure fluctuations and the ramp type decreases the separation length. The presence of MVGs stabilizes the shock and shock oscillation is damped.


Galaxies ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 39
Author(s):  
Arghajit Jana ◽  
Jie-Rou Shang ◽  
Dipak Debnath ◽  
Sandip K. Chakrabarti ◽  
Debjit Chatterjee ◽  
...  

The 2015 Outburst of V404 Cygni is an unusual one with several X-ray and radio flares and rapid variation in the spectral and timing properties. The outburst occurred after 26 years of inactivity of the black hole. We study the accretion flow properties of the source during its initial phase of the outburst using Swift/XRT and Swift/BAT data in the energy range of 0.5–150 keV. We have done spectral analysis with the two component advective flow (TCAF) model fits file. Several flow parameters such as two types of accretion rates (Keplerian disk and sub-Keplerian halo), shock parameters (location and compression ratio) are extracted to understand the accretion flow dynamics. We calculated equipartition magnetic field Beq for the outburst and found that the highest Beq∼900 Gauss. Power density spectra (PDS) showed no break, which indicates no or very less contribution of the Keplerian disk component, which is also seen from the result of the spectral analysis. No signature of prominent quasi-periodic oscillations (QPOs) is observed in the PDS. This is due to the non-satisfaction of the condition for the resonance shock oscillation as we observed mismatch between the cooling timescale and infall timescale of the post-shock matter.


Fluids ◽  
2020 ◽  
Vol 5 (2) ◽  
pp. 46 ◽  
Author(s):  
Jack A. Geoghegan ◽  
Nicholas F. Giannelis ◽  
Gareth A. Vio

At transonic flight conditions, shock oscillations on wing surfaces are known to occur and result in degraded aerodynamic performance and handling qualities. This is a purely flow-driven phenomenon, known as transonic buffet, that causes limit cycle oscillations and may present itself within the operational flight envelope. Hence, there is significant research interest in the development of shock control techniques to either stabilise the unsteady flow or raise the boundary onset. This paper explores the efficacy of dynamically activated contour-based shock control bumps within the buffet envelope of the OAT15A aerofoil on transonic flow control numerically through unsteady Reynolds-averaged Navier–Stokes modelling. A parametric evaluation of the geometric variables that define the Hicks–Henne-derived shock control bump will show that bumps of this type lead to a large design space of applicable shapes for buffet suppression. Assessment of the flow field, local to the deployed shock control bump geometries, reveals that control is achieved through a weakening of the rear shock leg, combined with the formation of dual re-circulatory cells within the separated shear-layer. Within this design space, favourable aerodynamic performance can also be achieved. The off-design performance of two optimal shock control bump configurations is explored over the buffet region for M = 0.73, where the designs demonstrate the ability to suppress shock oscillations deep into the buffet envelope.


Aerospace ◽  
2019 ◽  
Vol 6 (1) ◽  
pp. 8
Author(s):  
Chengpeng Wang ◽  
Xin Yang ◽  
Longsheng Xue ◽  
Konstantinos Kontis ◽  
Yun Jiao

The flow field in a hypersonic inlet model at a design point of M = 6 has been studied experimentally. The focus of the current study is to present the time-resolved flow characteristics of separation shock around the cowl and the correlation between the separation shock oscillation induced by the unstart flow and the wall pressure fluctuation when the inlet is in a state of unstart. High-speed Schlieren flow visualization is used to capture the transient shock structure. High-frequency pressure transducers are installed on the wall around both the cowl and isolator areas to detect the dynamic pressure distribution. A schlieren image quantization method based on gray level detection and calculation is developed to analyze the time-resolved spatial structure of separation shock. Results indicate that the induced separation shock oscillation and the wall pressure fluctuation are closely connected, and they show the same frequency variation characteristics. The unsteady flow pattern of the “little buzz” and “big buzz” modes are clarified based on time-resolved Schlieren images of separation shock. Furthermore, the appropriate location of the pressure transducers is determined on the basis of the combined analysis of fluctuating wall-pressure and oscillating separation shock data.


Sign in / Sign up

Export Citation Format

Share Document