shock control bump
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 5)

H-INDEX

7
(FIVE YEARS 1)

Author(s):  
Jinhao Qiu ◽  
Lin Hao ◽  
Hongli Ji ◽  
Chen Zhang ◽  
Rui Nie

A shape memory alloy (SMA) with composition of Ni50.1Ti49.9 (at. %) was used for fabrication of a 3-D bump structure intended for use as an active shock control bump (SCB) into a transonic wing. This kind of bump is a variable-geometry structure designed to reduce the drag induced by shock wave ensure wing’s aerodynamic performance over the entire range of operating conditions. To meet this target, the SMA bump requires to exhibit two-way shape memory effect (TWSME) so that it can yield continuous shape change by properly changing the driving temperature. Result from differential scanning calorimetry was first presented to provide material’s phase transformation temperatures. To obtain the TWSME, a thermo-mechanical training procedure was proposed and a set of training devices were designed for training SMA bump. The SMA bump in this paper is trained to have a relatively flat shape in high temperature and can swell up when cooling. After more than 80 times training, the TWSME of the material tends to be stable. Then the thermo-mechanical responses of the SMA bump which is subjected to about 100 times training was tested. The result shows that the trained SMA bump can generate about 1.2 mm maximum recoverable deformation during martensitic transformation, which is about 3% of the ratio of the deformation region. Finally, the influence of external load on the thermo-mechanical response of the trained SMA bump were also studied.


Aerospace ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 203
Author(s):  
Yufei Zhang ◽  
Pu Yang ◽  
Runze Li ◽  
Haixin Chen

The unsteady flow characteristics of a supercritical OAT15A airfoil with a shock control bump were numerically studied by a wall-modeled large eddy simulation. The numerical method was first validated by the buffet and nonbuffet cases of the baseline OAT15A airfoil. Both the pressure coefficient and velocity fluctuation coincided well with the experimental data. Then, four different shock control bumps were numerically tested. A bump of height h/c = 0.008 and location xB/c = 0.55 demonstrated a good buffet control effect. The lift-to-drag ratio of the buffet case was increased by 5.9%, and the root mean square of the lift coefficient fluctuation was decreased by 67.6%. Detailed time-averaged flow quantities and instantaneous flow fields were analyzed to demonstrate the flow phenomenon of the shock control bumps. The results demonstrate that an appropriate “λ” shockwave pattern caused by the bump is important for the flow control effect.


Author(s):  
Markus Kintscher ◽  
Johannes Riemenschneider ◽  
Hans-Peter Monner ◽  
Martin Wiedemann

AbstractDrag reduction technologies in aircraft design are the key enabler for reducing emissions and for sustainable growth of commercial aviation. Laminar wing technologies promise a significant benefit by drag reduction and are, therefore, under investigation in various European projects. However, of the established moveable concepts and high-lift systems thus far most do not cope with the requirements for natural laminar flow wings. To this aim, new leading edge high-lift systems have been the focus of research activities in the last 5 years. Such leading edge devices investigated in projects include a laminar flow-compatible Kruger flap (Schlipf (2011) Insect shielding Krüger—structural design for a laminar flow wing. In: DGLR Congress 2011, Bremen, pp 55–60) and the Droop Nose concept (Kintscher et al. Ground testof an enhanced adaptive droop nose device. In: European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS 2016. ECCOMAS2016—VII European Congress on Computational Methods in Applied Sciences and Engineering, 5–10 June 2016, Crete Island, Greece; Kintscher et al. Low speed wind tunnel test of a morphing leading edge. In: AIDAA—Italian Association of Aeronautics and Astronautics XXII Conference, 09–12 Sept. 2013. Neapel, Italien) and these can be considered as alternatives to the conventional slat. Hybrid laminar flow concepts are also under investigation at several research institutes in Europe (Fischer. Stepless and sustainable research for the aircraft of tomorrow—from AFloNext to Clean Sky 2. In: 1st AFloNext Workshop Key Note Lecture No. 1, Delft, The Netherlands, 10 Sept 2015). Another challenge associated with laminar wings aside from the development of leading edge movables is the need to address the control of aerodynamic shocks and buffeting as laminar wings are sensitive to high flow speeds. Here, one possible method of decreasing the wave drag caused by the aerodynamic shock is through the use of shock control bumps (SCBs). The objective of SCBs is the conversion of a single strong shock into several smaller and weaker λ-shocks resulting in a drag benefit when deployed correctly. A particular desirable characteristic of SCBs is that they should be adaptable in position and height as the shock position changes with varying conditions such as speed, altitude, and angle of attack during the flight. However, as a fixed case, SCBs can also help to control laminar buffeting by fixing the shock into given positions at the SCBs location. In this paper, a structural concept for an adaptive shock control bump spoiler is presented. Based on a concept of a fixed bump SCB spoiler, a design for an adaptive spoiler with two conventional actuators is presented. Design drivers and interdependencies of important design parameters are discussed. The presented design is simple and aims for a high TRL without adding much complexity to the spoiler. It is robust and able to form a bump with a height of 0.6% chord length which position can be adapted in a range of 10% chord. This paper is a follow-up of a previous publication (Kintscher and Monner, SAE Tech Paper 10.4271/2017-01-2164, 2017) with extending the focus by a validation of computational results by experimental tests.


2020 ◽  
Vol 31 (15) ◽  
pp. 1821-1837
Author(s):  
Nuno Alves de Sousa ◽  
Markus Kintscher ◽  
Afzal Suleman

The dawn of research on shock and boundary layer interaction control dates back to the 1970s, when humped transonic aerofoils were first studied as a means to improve the performance of supercritical aerofoil technology at off-design conditions. Since then, shock control bumps have been found to be promising devices for such kind of flow control. They have a smearing effect on the shock wave structure achieved through isentropic pre-compression of the flow upstream of the main shock and can significantly lower wave drag without incurring unacceptable viscous losses. However, their performance is strongly dependent on a set of geometrical parameters which must be adjusted according to the ever-changing flight conditions. A concept for an adaptive shock control bump is therefore presented. The proposed actuation mechanism aims at a compact, lightweight and simple structure which could be integrated into the spoiler region of near-future aircraft without major design changes required. Numerical optimization of a simplified analytical model of the structure is used to investigate the shock control bump adaptation to various aerodynamic target shapes. Compromises between geometrical conformity and both structural and actuation related requirements are studied. Furthermore, an outlook is given on design issues related to three-dimensional effects on a finite span shock control bump.


Fluids ◽  
2020 ◽  
Vol 5 (2) ◽  
pp. 46 ◽  
Author(s):  
Jack A. Geoghegan ◽  
Nicholas F. Giannelis ◽  
Gareth A. Vio

At transonic flight conditions, shock oscillations on wing surfaces are known to occur and result in degraded aerodynamic performance and handling qualities. This is a purely flow-driven phenomenon, known as transonic buffet, that causes limit cycle oscillations and may present itself within the operational flight envelope. Hence, there is significant research interest in the development of shock control techniques to either stabilise the unsteady flow or raise the boundary onset. This paper explores the efficacy of dynamically activated contour-based shock control bumps within the buffet envelope of the OAT15A aerofoil on transonic flow control numerically through unsteady Reynolds-averaged Navier–Stokes modelling. A parametric evaluation of the geometric variables that define the Hicks–Henne-derived shock control bump will show that bumps of this type lead to a large design space of applicable shapes for buffet suppression. Assessment of the flow field, local to the deployed shock control bump geometries, reveals that control is achieved through a weakening of the rear shock leg, combined with the formation of dual re-circulatory cells within the separated shear-layer. Within this design space, favourable aerodynamic performance can also be achieved. The off-design performance of two optimal shock control bump configurations is explored over the buffet region for M = 0.73, where the designs demonstrate the ability to suppress shock oscillations deep into the buffet envelope.


AIAA Journal ◽  
2018 ◽  
Vol 56 (12) ◽  
pp. 4801-4814
Author(s):  
Natasha R. Jones ◽  
Jerome P. Jarrett

2018 ◽  
Vol 29 (15) ◽  
pp. 3055-3066 ◽  
Author(s):  
Lin Hao ◽  
Jinhao Qiu ◽  
Hongli Ji ◽  
Rui Nie

A three-dimensional adaptive shock control bump made of shape memory alloy is proposed for transonic wings. The methodology to adaptively change the configuration of the airfoil using the shape memory alloy bump to reduce the shock strength and wave drag is numerically demonstrated using an airfoil RAE2822. The shape memory alloy bump is trained to have a flat initial shape with certain initial strain and can swell up when thermally activated. Boyd–Lagoudas phenomenological model is implemented in finite element method and used to compute the two-dimensional profile and the height of the shape memory alloy bump during thermal activation. The results show that the shape memory alloy bump can generate a considerable deflection due to the reverse phase transformation when thermally activated. The dependence of aerodynamic characteristics of the wing on the height of the shape memory alloy bump and the angle of attack is investigated using computational fluid dynamics method. The results show that there is an optimal bump height for a given angle of attack and the bump with a given height is effective only in certain range of angle of attack. Optimization of bump height and the corresponding driving temperature are carried out under variable angles of attack with the lift-to-drag ratio as the objective function.


2017 ◽  
Vol 30 (5) ◽  
pp. 1681-1696 ◽  
Author(s):  
Yun TIAN ◽  
Shiqi GAO ◽  
Peiqing LIU ◽  
Jinjun WANG

Sign in / Sign up

Export Citation Format

Share Document