error propagation analysis
Recently Published Documents


TOTAL DOCUMENTS

95
(FIVE YEARS 6)

H-INDEX

14
(FIVE YEARS 1)

Author(s):  
Andrey Morozov ◽  
Thomas Mutzke ◽  
Kai Ding

Abstract Modern technical systems consist of heterogeneous components, including mechanical parts, hardware, and the extensive software part that allows the autonomous system operation. The heterogeneity and autonomy require appropriate models that can describe the mutual interaction of the components. UML and SysML are widely accepted candidates for system modeling and model-based analysis in early design phases, including the analysis of reliability properties. UML and SysML models are semi-formal. Thus, transformation methods to formal models are required. Recently, we introduced a stochastic Dual-graph Error Propagation Model (DEPM). This model captures control and data flow structures of a system and allows the computation of advanced risk metrics using probabilistic model checking techniques. This article presents a new automated transformation method of an annotated State Machine Diagram, extended with Activity Diagrams, to a hierarchical DEPM. This method will help reliability engineers to keep error propagation models up to date and ensure their consistency with the available system models. The capabilities and limitations of transformation algorithm is described in detail and demonstrated on a complete model-based error propagation analysis of an autonomous medical patient table.



2021 ◽  
Vol 290 ◽  
pp. 123156
Author(s):  
Alexandre Mikowski ◽  
Rafael Machado Casali ◽  
Paulo Soares ◽  
Wyllian Bezerra da Silva ◽  
Breno Salgado Barra


2021 ◽  
Vol 13 (4) ◽  
pp. 753 ◽  
Author(s):  
Francesco Mancini ◽  
Francesca Grassi ◽  
Nicola Cenni

This paper discusses a full interferometry processing chain based on dual-orbit Sentinel-1A and Sentinel-1B (S1) synthetic aperture radar data and a combination of open-source routines from the Sentinel Application Platform (SNAP), Stanford Method for Persistent Scatterers (StaMPS), and additional routines introduced by the authors. These are used to provide vertical and East-West horizontal velocity maps over a study area in the south-western sector of the Po Plain (Italy) where land subsidence is recognized. The processing of long time series of displacements from a cluster of continuous global navigation satellite system stations is used to provide a global reference frame for line-of-sight–projected velocities and to validate velocity maps after the decomposition analysis. We thus introduce the main theoretical aspects related to error propagation analysis for the proposed methodology and provide the level of uncertainty of the validation analysis at relevant points. The combined SNAP–StaMPS workflow is shown to be a reliable tool for S1 data processing. Based on the validation procedure, the workflow allows decomposed velocity maps to be obtained with an accuracy of 2 mm/yr with expected uncertainty levels lower than 2 mm/yr. Slant-oriented and decomposed velocity maps provide new insights into the ground deformation phenomena that affect the study area arising from a combination of natural and anthropogenic sources.



2020 ◽  
Vol 50 (3) ◽  
pp. 325-346
Author(s):  
Joseph Olayemi ODUMOSU ◽  
Victor Chukwuemeka NNAM

The need for dense and accurate gravity data cannot be overemphasised in the development of a precise gravimetric geoid model. Unfortunately, the field observations required are costly, and labour-intensive hence the need to ascertain via numerical simulations the appropriate field specifications before embarking on them. This paper presents an experimental study on the gravimetric data specifications (spatial resolution and data accuracy) required for achieving decimetre-level accuracy geoid using the conventional Stokes' Remove Compute Restore (RCR) method in Nigeria. A two-step solution approach was used in this study. The steps were determination of the (i) effect of data spacing by a comparative assessment of computation results obtained by using gravity data at four user determined intervals and (ii) effect of observation accuracy by numerical simulation using error propagation analysis. The data intervals (3′×3′, 5′×5′, 10′×10′ and 20′×20′) were selected from a combination of 1815 terrestrial FA anomaly points merged with EGM2008 derived FA anomaly covering the study area. Also, observational errors investigated were 0 mGal, 0.1 mGal, 0.5 mGal, 1 mGal and 5 mGal. The study was conducted in Nigeria having a total land area of approximately 923,768 km2. The study established that gravimetric geoid accuracy improves substantially as the spatial resolution and accuracy of the gravity data improves. Also, the study identified that data spacing contributes more to the overall geoid error than data accuracy. In addition, the study observed that hilly regions should have denser data spacing than plain areas. Within the test region, a data spacing of 3′×3′ with gravity observational errors 5 mGal was found to produce an acceptable gravimetric geoid. The produced gravimetric geoid had a pre-fit Root Mean Square Error (RMSE) of 15.6 cm when compared with GNSS-Levelling data at 27 stations located evenly across the study area.



Author(s):  
Mohammad Hossein Saadatzi ◽  
Dan O. Popa

Abstract Additive manufacturing, as a viable industrial-production technology, requires multi-DOF positioning with high precision and repeatability for either the printer head, or the part being printed. In this paper we present a novel methodology to analyze the error propagation informing the design of a high-precision robotic 5-DOF positioner for applications in additive manufacturing. We designed our positioner through serial attachment of linear and rotational stages by comparing the precision of three different kinematic arrangements of stages. Within order to minimize positioning errors in Cartesian space, the kinematic sensitivity of the mechanisms end-effector relative to the maximum expected error of each joint was computed, and the kinematic configuration with smallest 6D positioning error at the end-effector was selected. The methodology employed in this paper for the error propagation analysis of serial kinematic chains has a great level of generality and can facilitate the design and optimization of a wide-class of multi-DOF positioners.



Sign in / Sign up

Export Citation Format

Share Document