scholarly journals Charge completeness and the massless charge lattice in F-theory models of supergravity

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
David R. Morrison ◽  
Washington Taylor

Abstract We prove that, for every 6D supergravity theory that has an F-theory description, the property of charge completeness for the connected component of the gauge group (meaning that all charges in the corresponding charge lattice are realized by massive or massless states in the theory) is equivalent to a standard assumption made in F-theory for how geometry encodes the global gauge theory by means of the Mordell-Weil group of the elliptic fibration. This result also holds in 4D F-theory constructions for the parts of the gauge group that come from sections and from 7-branes. We find that in many 6D F-theory models the full charge lattice of the theory is generated by massless charged states; this occurs for each gauge factor where the associated anomaly coefficient satisfies a simple positivity condition. We describe many of the cases where this massless charge sufficiency condition holds, as well as exceptions where the positivity condition fails, and analyze the related global structure of the gauge group and associated Mordell-Weil torsion in explicit F-theory models.

2011 ◽  
Vol 22 (05) ◽  
pp. 1161-1185
Author(s):  
ABUSAYEED SAIFULLAH ◽  
YUNG H. TSIN

A self-stabilizing algorithm is a distributed algorithm that can start from any initial (legitimate or illegitimate) state and eventually converge to a legitimate state in finite time without being assisted by any external agent. In this paper, we propose a self-stabilizing algorithm for finding the 3-edge-connected components of an asynchronous distributed computer network. The algorithm stabilizes in O(dnΔ) rounds and every processor requires O(n log Δ) bits, where Δ(≤ n) is an upper bound on the degree of a node, d(≤ n) is the diameter of the network, and n is the total number of nodes in the network. These time and space complexity are at least a factor of n better than those of the previously best-known self-stabilizing algorithm for 3-edge-connectivity. The result of the computation is kept in a distributed fashion by assigning, upon stabilization of the algorithm, a component identifier to each processor which uniquely identifies the 3-edge-connected component to which the processor belongs. Furthermore, the algorithm is designed in such a way that its time complexity is dominated by that of the self-stabilizing depth-first search spanning tree construction in the sense that any improvement made in the latter automatically implies improvement in the time complexity of the algorithm.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
F. Fucito ◽  
J. F. Morales ◽  
R. Poghossian

Abstract We study the non-perturbative corrections generated by exotic instantons in U(N) gauge theories in eight and four dimensions. As it was shown previously, the eight-dimensional prepotential can be resummed using a plethystic formula showing only a dependence from the center of mass and from a U(1) gauge factor. On the contrary, chiral correlators in eight and four dimensions display a non-trivial dependence from the full gauge group. Furthermore the resolvent, the generating function for the eight and four dimensional correlators, can be written in a compact form both in the eight and four dimensional cases.


1999 ◽  
Vol 155 ◽  
pp. 27-53 ◽  
Author(s):  
Michel Waldschmidt

AbstractLet be a simple Abelian variety of dimension g over ℚ, and let ℓ be the rank of the Mordell-Weil group (ℚ). Assume ℓ ≥ 1. A conjecture of Mazur asserts that the closure of (ℚ) into (ℝ) for the real topology contains the neutral component (ℝ)0 of the origin. This is known only under the extra hypothesis ℓ ≥ g2 - g + 1. We investigate here a quantitative refinement of this question: for each given positive h, the set of points in (ℚ) of Néron-Tate height ≤ h is finite, and we study how these points are distributed into the connected component (ℝ)0. More generally we consider an Abelian variety A over a number field K embedded in ℝ, and a subgroup Γ of (K) of sufficiently large rank. The effective result of density we obtain relies on an estimate of Diophantine approximation, namely a lower bound for linear combinations of determinants involving Abelian logarithms.


1966 ◽  
Vol 24 ◽  
pp. 118-119
Author(s):  
Th. Schmidt-Kaler

I should like to give you a very condensed progress report on some spectrophotometric measurements of objective-prism spectra made in collaboration with H. Leicher at Bonn. The procedure used is almost completely automatic. The measurements are made with the help of a semi-automatic fully digitized registering microphotometer constructed by Hög-Hamburg. The reductions are carried out with the aid of a number of interconnected programmes written for the computer IBM 7090, beginning with the output of the photometer in the form of punched cards and ending with the printing-out of the final two-dimensional classifications.


Author(s):  
J. Temple Black ◽  
William G. Boldosser

Ultramicrotomy produces plastic deformation in the surfaces of microtomed TEM specimens which can not generally be observed unless special preparations are made. In this study, a typical biological composite of tissue (infundibular thoracic attachment) infiltrated in the normal manner with an embedding epoxy resin (Epon 812 in a 60/40 mixture) was microtomed with glass and diamond knives, both with 45 degree body angle. Sectioning was done in Portor Blum Mt-2 and Mt-1 microtomes. Sections were collected on formvar coated grids so that both the top side and the bottom side of the sections could be examined. Sections were then placed in a vacuum evaporator and self-shadowed with carbon. Some were chromium shadowed at a 30 degree angle. The sections were then examined in a Phillips 300 TEM at 60kv.Carbon coating (C) or carbon coating with chrom shadowing (C-Ch) makes in effect, single stage replicas of the surfaces of the sections and thus allows the damage in the surfaces to be observable in the TEM. Figure 1 (see key to figures) shows the bottom side of a diamond knife section, carbon self-shadowed and chrom shadowed perpendicular to the cutting direction. Very fine knife marks and surface damage can be observed.


Author(s):  
M. Ashraf ◽  
F. Thompson ◽  
S. Miki ◽  
P. Srivastava

Iron is believed to play an important role in the pathogenesis of ischemic injury. However, the sources of intracellular iron in myocytes are not yet defined. In this study we have attempted to localize iron at various cellular sites of the cardiac tissue with the ferrocyanide technique.Rat hearts were excised under ether anesthesia. They were fixed with coronary perfusion with 3% buffered glutaraldehyde made in 0.1 M cacodylate buffer pH 7.3. Sections, 60 μm in thickness, were cut on a vibratome and were incubated in the medium containing 500 mg of potassium ferrocyanide in 49.5 ml H2O and 0.5 ml concentrated HC1 for 30 minutes at room temperature. Following rinses in the buffer, tissues were dehydrated in ethanol and embedded in Spurr medium.The examination of thin sections revealed intense staining or reaction product in peroxisomes (Fig. 1).


Author(s):  
J.M. Titchmarsh

The advances in recent years in the microanalytical capabilities of conventional TEM's fitted with probe forming lenses allow much more detailed investigations to be made of the microstructures of complex alloys, such as ferritic steels, than have been possible previously. In particular, the identification of individual precipitate particles with dimensions of a few tens of nanometers in alloys containing high densities of several chemically and crystallographically different precipitate types is feasible. The aim of the investigation described in this paper was to establish a method which allowed individual particle identification to be made in a few seconds so that large numbers of particles could be examined in a few hours.A Philips EM400 microscope, fitted with the scanning transmission (STEM) objective lens pole-pieces and an EDAX energy dispersive X-ray analyser, was used at 120 kV with a thermal W hairpin filament. The precipitates examined were extracted using a standard C replica technique from specimens of a 2¼Cr-lMo ferritic steel in a quenched and tempered condition.


Author(s):  
T. R. Dinger

Zirconia (ZrO2) is often added to ceramic compacts to increase their toughness. The mechanisms by which this toughness increase occurs are generally accepted to be those of transformation toughening and microcracking. The mechanism of transformation toughening is based on the presence of metastable tetragonal ZrO2 which transforms to the monoclinic allotrope when stressed by a propagating crack. The decrease in volume which accompanies this transformation effectively relieves the applied stress at the crack tip and toughens the material; microcrack toughening arises from the deflection of a propagating crack around sharply angular inclusions.These mechanisms, however, do not explain the toughness increases associated with the class of composites investigated here. Analytical electron microscopy (AEM) has been used to determine whether solid solution effects could be the cause of this increased toughness. Specimens of a mullite (3Al2O3·2SiO2) + 15 vol. % ZrO2 were prepared by the usual technique of mechanical thinning followed by ion beam milling. All observations were made in a Philips EM400 TEM/STEM microscope fitted with EDXS and EELS spectrometers.


Author(s):  
F. Monchoux ◽  
A. Rocher ◽  
J.L. Martin

Interphase sliding is an important phenomenon of high temperature plasticity. In order to study the microstructural changes associated with it, as well as its influence on the strain rate dependence on stress and temperature, plane boundaries were obtained by welding together two polycrystals of Cu-Zn alloys having the face centered cubic and body centered cubic structures respectively following the procedure described in (1). These specimens were then deformed in shear along the interface on a creep machine (2) at the same temperature as that of the diffusion treatment so as to avoid any precipitation. The present paper reports observations by conventional and high voltage electron microscopy of the microstructure of both phases, in the vicinity of the phase boundary, after different creep tests corresponding to various deformation conditions.Foils were cut by spark machining out of the bulk samples, 0.2 mm thick. They were then electropolished down to 0.1 mm, after which a hole with thin edges was made in an area including the boundary


Author(s):  
Imre Pozsgai ◽  
Klara Erdöhalmi-Torok

The paintings by the great Hungarian master Mihaly Munkacsy (1844-1900) made in an 8-9 years period of his activity are deteriorating. The most conspicuous sign of the deterioration is an intensive darkening. We have made an attempt by electron beam microanalysis to clarify the causes of the darkening. The importance of a study like this is increased by the fact that a similar darkening can be observed on the paintings by Munkacsy’s contemporaries e.g Courbet and Makart. A thick brown mass the so called bitumen used by Munkacsy for grounding and also as a paint is believed by the art historians to cause the darkening.For this study, paint specimens were taken from the following paintings: “Studio”, “Farewell” and the “Portrait of the Master’s Wife”, all of them are the property of the Hungarian National Gallery. The paint samples were embedded in a polyester resin “Poly-Pol PS-230” and after grinding and polishing their cross section was used for x-ray mapping.


Sign in / Sign up

Export Citation Format

Share Document