ambiguity decorrelation
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 2)

H-INDEX

5
(FIVE YEARS 0)

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 165
Author(s):  
Shouhua Wang ◽  
Zhiqi You ◽  
Xiyan Sun

In the face of a complex observation environment, the solution of the reference station of the ambiguity of network real-time kinematic (RTK) will be affected. The joint solution of multiple systems makes the ambiguity dimension increase steeply, which makes it difficult to estimate all the ambiguity. In addition, when receiving satellite observation signals in the environment with many occlusions, the received satellite observation values are prone to gross errors, resulting in obvious deviations in the solution. In this paper, a new network RTK fixation algorithm for partial ambiguity among the reference stations is proposed. It first estimates the floating-point ambiguity using the robust extended Kalman filtering (EKF) technique based on mean estimation, then finds the optimal ambiguity subset by the optimized partial ambiguity solving method. Finally, fixing the floating-point solution by the least-squares ambiguity decorrelation adjustment (LAMBDA) algorithm and the joint test of ratio (R-ratio) and bootstrapping success rate index solver. The experimental results indicate that the new method can significantly improve the fixation rate of ambiguity among network RTK reference stations and thus effectively improve the reliability of positioning results.


2020 ◽  
Vol 46 (2) ◽  
pp. 89-97
Author(s):  
Noureddine Kheloufi ◽  
Abdelhalim Niati

In the context of processing GNSS (Global Navigation Satellite System) data, it is known that the estimation of the ionospheric delays decreases the strength of the observation model and makes significant the time required to fix the ambiguities namely in case of long baselines. However, considering the double-differenced (DD) ionospheric delays as stochastic quantities, the redundancy in this case increases and leads to the reduction of time of fixing the ambiguities. The approach developed in the present paper makes two considerations: 1) the DD ionospheric delays are assumed as stochastic quantities and, 2) the spatial correlation of errors is accounted for based on a simple model of correlation. A simulation is made and aims to study the effect of these two mentioned considerations on the performances of the three multifrequency GNSSs; modernized GPS, Galileo and BDS which are not yet in full capability. For each GNSS, dual-frequency combinations of frequencies as well as triple-frequency combination are investigated in the simulation. The performances studied include: the time to fix the ambiguities with high success rate and the precision of coordinates in static relative positioning with varying baseline length. A method is developed to derive what we call the spatial correlation model which approximately gives the covariance between the individual errors belonging to two stations. Furthermore, the stochastic models that follow from accounting and neglecting the spatial correlation are developed. The LAMBDA (Least-squares Ambiguity Decorrelation Adjustment) method is implemented for ambiguity decorrelation. The results show that the time to fix the ambiguities caused by accounting the spatial correlation is less than the time of fix without the spatial correlation. Also, a slight superiority of Galileo in terms of performances is seen compared to the other GNSS. For all the dualfrequency combinations investigated, when processing a baseline length of 500 km with accounted spatial correlation, the time needed to successfully fix the ambiguities lies between 5 and 9 min, whereas it becomes only between 2.5 and 3 min for all the triple-frequency combinations, this is with a sampling time of 5 s. In addition, for all different combinations, the coordinates precision is less than 8 mm even for 500 km. We think that these high performances result from: 1) the precise codes of future GNSS signals, 2) the high redundancy in the observations equation and, 3) taking into account the spatial correlation in the definition of the stochastic model.


GPS Solutions ◽  
2017 ◽  
Vol 21 (4) ◽  
pp. 1829-1840
Author(s):  
Zemin Wu ◽  
Houpu Li ◽  
Shaofeng Bian

2012 ◽  
Vol 532-533 ◽  
pp. 1031-1035
Author(s):  
Jing Qin Mu ◽  
Sheng Zhan

The time series analysis for D-InSAR is a new kind of method. While modeling with Gauss-Markoff model and estimating parameters, how to search for integer phase ambiguity needs to be addressed. In the study, the modified least-squares ambiguity decorrelation adjustment algorithm (MLAMBDA) is applied for the optimal integer phase ambiguity. The problems about applying are analyzed and solved by many experiments. At last, the method is applied for the project of all Tianjin district and the result is correct and effective.


2011 ◽  
Vol 403-408 ◽  
pp. 1968-1971 ◽  
Author(s):  
Qiu Zhao Zhang ◽  
Shu Bi Zhang ◽  
Wan Li Liu

Integer carrier phase ambiguity resolution is the key to fast and high-precision Global navigation satellite system(GNSS) positioning and application. LAMBDA method is one of the best methods for fixing integer ambiguity. The principle of LAMBDA is discussed. For incompleteness of Cholesky decomposition and complexity of Integer Gauss transformation, a new approach for GNSS ambiguity decorrelation is proposed based on symmetric pivoting strategy and united inverse integer strategy. The new algorithm applies symmetric pivoting strategy to ambiguity covariance matrix while doing Cholesky decomposition, then finds the inverse and integer matrix of ‘L’. This method not only uses Cholesky decomposition to improve efficiency, but also avoids complicated Integer Gauss transformations. The feasibility and advantage of the method are verified using randomly simulation covariance matrix.


Sign in / Sign up

Export Citation Format

Share Document