desert environment
Recently Published Documents


TOTAL DOCUMENTS

383
(FIVE YEARS 81)

H-INDEX

27
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Andrey Bakulin ◽  
Ilya Silvestrov ◽  
Dmitry Neklyudov

Abstract Acquiring data with single sensors or small arrays in a desert environment may lead to challenging data quality for subsequent processing. We present a new approach to effectively "heal" such data and allow efficient processing and imaging without requiring any additional acquisition. A novel method combines the power of seismic beamforming and time-frequency masking originating from speech processing. First, we create an enhanced version of the data with beamforming or local stacking. Beamforming effectively suppresses scattered noise and finds weak reflection signals, albeit sacrificing some higher frequencies. Next, we employ a seismic time-frequency masking procedure to fix the original data while using beamformed data as a guide. Time-frequency masking effectively fixes corrupt and broken phase of the original data. After such data-driven healing, prestack data can be effectively processed and imaged, while maintaining the higher frequencies lost during beamforming.


2021 ◽  
Vol 7 ◽  
pp. e772
Author(s):  
Ahmed I. Shahin ◽  
Sultan Almotairi

Building detection in high-resolution satellite images has received great attention, as it is important to increase the accuracy of urban planning. The building boundary detection in the desert environment is a real challenge due to the nature of low contrast images in the desert environment. The traditional computer vision algorithms for building boundary detection lack scalability, robustness, and accuracy. On the other hand, deep learning detection algorithms have not been applied to such low contrast satellite images. So, there is a real need to employ deep learning algorithms for building detection tasks in low contrast high-resolution images. In this paper, we propose a novel building detection method based on a single-shot multi-box (SSD) detector. We develop the state-of-the-art SSD detection algorithm based on three approaches. First, we propose data-augmentation techniques to overcome the low contrast images’ appearance. Second, we develop the SSD backbone using a novel saliency visual attention mechanism. Moreover, we investigate several pre-trained networks performance and several fusion functions to increase the performance of the SSD backbone. The third approach is based on optimizing the anchor-boxes sizes which are used in the detection stage to increase the performance of the SSD head. During our experiments, we have prepared a new dataset for buildings inside Riyadh City, Saudi Arabia that consists of 3878 buildings. We have compared our proposed approach vs other approaches in the literature. The proposed system has achieved the highest average precision, recall, F1-score, and IOU performance. Our proposed method has achieved a fast average prediction time with the lowest variance for our testing set. Our experimental results are very promising and can be generalized to other object detection tasks in low contrast images.


2021 ◽  
Vol 60 (5) ◽  
pp. 4275-4285
Author(s):  
Mehtab Singh ◽  
Sahil Nazir Pottoo ◽  
Jyoteesh Malhotra ◽  
Amit Grover ◽  
Moustafa H. Aly

2021 ◽  
Vol 47 ◽  
pp. 101487
Author(s):  
Majed Al-Rasheedi ◽  
Mohammad Al-Khayat ◽  
Christian A. Gueymard ◽  
Sue Ellen Haupt ◽  
Branko Kosović ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document