scholarly journals An Estimate of Ice Wedge Volume for a High Arctic Polar Desert Environment, Fosheim Peninsula, Ellesmere Island

2018 ◽  
Author(s):  
Claire Bernard-Grand'Maison ◽  
Wayne Pollard

Abstract. Quantifying ground ice volume on a regional scale is necessary to assess the vulnerability of permafrost landscapes to thaw induced disturbance like terrain subsidence and to quantify potential carbon release. Ice wedges (IWs) are a ubiquitous ground ice landform in the Arctic. Their high spatial variability makes generalizing their potential role in landscape change problematic. IWs form polygonal networks visible on satellite imagery from active layer surface troughs. This study focuses on the estimation of IW ice volume for the Fosheim Peninsula, Ellesmere Island, a continuous permafrost area characterized by polar desert conditions and extensive ground ice. We perform basic GIS analyses on high resolution satellite imagery to delineate IW troughs and estimate the associated IW ice volume using a 3D subsurface model. We demonstrate two semi-automated IW trough delineation methods with different strengths to increase time-efficiency of this process, done manually in previous studies. Our methods yield acceptable IW ice volume estimates validating the value of GIS to estimate IW volume on much larger scales. We estimate that IWs are potentially present on 50 % of the Fosheim Peninsula (± 3000 km2) where 3.81 % of the top 5.9 m of permafrost could be IW ice.

2018 ◽  
Vol 12 (11) ◽  
pp. 3589-3604 ◽  
Author(s):  
Claire Bernard-Grand'Maison ◽  
Wayne Pollard

Abstract. Quantifying ground-ice volume on a regional scale is necessary to assess the vulnerability of permafrost landscapes to thaw-induced disturbance like terrain subsidence and to quantify potential carbon release. Ice wedges (IWs) are a ubiquitous ground-ice landform in the Arctic. Their high spatial variability makes generalizing their potential role in landscape change problematic. IWs form polygonal networks that are visible on satellite imagery from surface troughs. This study provides a first approximation of IW ice volume for the Fosheim Peninsula, Ellesmere Island, a continuous permafrost area characterized by polar desert conditions and extensive ground ice. We perform basic GIS analyses on high-resolution satellite imagery to delineate IW troughs and estimate the associated IW ice volume using a 3-D subsurface model. We demonstrate the potential of two semi-automated IW trough delineation methods, one newly developed and one marginally used in previous studies, to increase the time efficiency of this process compared to manual delineation. Our methods yield acceptable IW ice volume estimates, validating the value of GIS to estimate IW volume on much larger scales. We estimate that IWs are potentially present on 50 % of the Fosheim Peninsula (∼3000 km2), where 3.81 % of the top 5.9 m of permafrost could be IW ice.


1986 ◽  
Vol 64 (11) ◽  
pp. 2502-2507 ◽  
Author(s):  
G. H. R. Henry ◽  
B. Freedman ◽  
J. Svoboda

Three plant communities studied at a high arctic oasis on Ellesmere Island responded to nutrient addition. Response to nitrogen was greatest in the driest community and weaker in the more mesic and wet-mesic communities. Nutrient addition resulted in (i) increased inflorescence densities of dicotyledonous and certain graminoid species; (ii) increased tiller densities of wet sedge species; and (iii) increased net production of graminoids and forbs at high rates of application, and in some dwarf shrubs at lower rates. These results parallel those of studies at lower latitudes in the Arctic, and support the hypothesis that arctic ecosystems are typically oligotrophic.


Author(s):  
T.V. Naber ◽  
S.E. Grasby ◽  
J.P. Cuthbertson ◽  
N. Rayner ◽  
C. Tegner

The High Arctic Large Igneous Province (HALIP) represents extensive Cretaceous magmatism throughout the circum-Arctic borderlands and within the Arctic Ocean (e.g., the Alpha-Mendeleev Ridge). Recent aeromagnetic data shows anomalies that extend from the Alpha Ridge onto the northern coast of Ellesmere Island, Nunavut, Canada. To test this linkage we present new bulk rock major and trace element geochemistry, and mineral compositions for clinopyroxene, plagioclase, and olivine of basaltic dykes and sheets and rhyolitic lavas for the stratotype section at Hansen Point, which coincides geographically with the magnetic anomaly at northern Ellesmere Island. New U-Pb chronology is also presented. The basaltic and basaltic-andesite dykes and sheets at Hansen Point are all evolved with 5.5−2.5 wt% MgO, 48.3−57.0 wt% SiO2, and have light rare-earth element enriched patterns. They classify as tholeiites and in Th/Yb vs. Nb/Yb space they define a trend extending from the mantle array toward upper continental crust. This trend, also including a rhyolite lava, can be modeled successfully by assimilation and fractional crystallization. The U-Pb data for a dacite sample, that is cut by basaltic dykes at Hansen Point, yields a crystallization age of 95.5 ± 1.0 Ma, and also shows crustal inheritance. The chronology and the geochemistry of the Hansen Point samples are correlative with the basaltic lavas, sills, and dykes of the Strand Fiord Formation on Axel Heiberg Island, Nunavut, Canada. In contrast, a new U-Pb age for an alkaline syenite at Audhild Bay is significantly younger at 79.5 ± 0.5 Ma, and correlative to alkaline basalts and rhyolites from other locations of northern Ellesmere Island (Audhild Bay, Philips Inlet, and Yelverton Bay West; 83−73 Ma). We propose these volcanic occurrences be referred to collectively as the Audhild Bay alkaline suite (ABAS). In this revised nomenclature, the rocks of Hansen Point stratotype and other tholeiitic rocks are ascribed to the Hansen Point tholeiitic suite (HPTS) that was emplaced at 97−93 Ma. We suggest this subdivision into suites replace the collective term Hansen Point volcanic complex. The few dredge samples of alkali basalt available from the top of the Alpha Ridge are akin to ABAS in terms of geochemistry. Our revised dates also suggest that the HPTS and Strand Fiord Formation volcanic rocks may be the hypothesized subaerial large igneous province eruption that drove the Cretaceous Ocean Anoxic Event 2.


1990 ◽  
Vol 21 (4-5) ◽  
pp. 273-286 ◽  
Author(s):  
Sylvia A. Edlund ◽  
Ming-ko Woo ◽  
Kathy L. Young

Recent studies at Hot Weather Creek, Ellesmere Island document the climate and vegetation of a major part of the intermontane zone of Ellesmere Island. Summer temperatures in this region are much higher than would be expected for its 80° N location. This enables a variety of arctic species with more moderate temperature tolerances to thrive. The dense and diverse tundra and wetland vegetation in parts of the region, however, does not conform to polar desert or semidesert vegetation expected from the meager amount of precipitation (< 70 mm per year) recorded there. Comparisons between differing biological and geomorphological responses to the summer climatic regimes of 1988 and 1989 suggest a two source supply of moisture to the active layer in summer. Supplementary source of water, from the melting of massive ground ice bodies provides water from the base of the active layer, during the hot, dry summer of 1988. During the wet summer of 1989, a more conventional nival regime was in operation. These two potential sources of moisture in summer provide a fail-safe delivery system to vegetation in areas underlain by massive ground ice, and permit a richer vegetation growth than climate alone could.


1987 ◽  
Vol 33 (114) ◽  
pp. 195-199 ◽  
Author(s):  
Martin O. Jeffries ◽  
H. Roy Krouse

AbstractSnow-pack along the land-fast ice fringe off the north coast of Ellesmere Island was generally characterized by depth-hoar overlain by dense snow and wind slab. Mean snow depth in the study area was 0.54 m (1982-85) and the mean δ18O value of the snow-pack was -31.3˚/00. Isotope data were not obtained previously for this geographic region and, therefore, complement a previous study of δ18O variations in High Arctic snow (Koerner, 1979). The data are consistent with an Arctic Ocean moisture source. The δ18O profiles show seasonal variations, with winter snow being more depleted in 18O than fall and spring snow. However, the δ18O profiles are dominated by a trend to higher δ18O values with increasing depth. This is attributed to a decrease in δ18O values as condensation temperatures fall during the autumn-winter accumulation period. During this time, there is also a change from relatively open to almost complete ice cover in the Arctic Ocean. The change in evaporation conditions and consequent effect on δ values gives rise to a sharp discontinuity in the δ18O profiles and a bi-modal δ18O frequency distribution. The bi-modal distribution is reinforced by a secondary isotope fractionation that occurs during depth-hoar formation. This isotope effect leads to a wider δ18O range but does not significantly alter the mean δ18O value.


1966 ◽  
Vol 98 (11) ◽  
pp. 1135-1144 ◽  
Author(s):  
J. A. Downes

AbstractFrom the revised list of the Lepidoptera of Greenland and from recent work in Ellesmere Island it is shown that almost all the species found in high arctic Canada occur also in Greenland, predominantly in the north, and that this high arctic element constitutes a large fraction of the fauna of Greenland as a whole. It is suggested that this part of the fauna originated entirely from the nearctic by the little-interrupted land route across the arctic islands. The poverty of southerly Lepidoptera in Greenland stands in sharp contrast. It is illustrated by a comparison with the vascular plants and by other comparisons with the Lepidoptera found in the corresponding life zones in North America, and this section of the paper includes the first published list of the Lepidoptera of Baffin Island. It is suggested that this southerly fauna is of adventitious origin, by casual dispersal from overseas (Labrador, Iceland) or perhaps in a few cases by introduction by man. Thus Greenland, in respect of its fauna of southerly type, is an oceanic island of post-glacial age. Similar evidence suggests that Iceland also has been populated mainly in the same way. The conclusions derived from the Lepidoptera apply to several other groups of insects and also to the mammals, including man.


1987 ◽  
Vol 33 (114) ◽  
pp. 195-199 ◽  
Author(s):  
Martin O. Jeffries ◽  
H. Roy Krouse

AbstractSnow-pack along the land-fast ice fringe off the north coast of Ellesmere Island was generally characterized by depth-hoar overlain by dense snow and wind slab. Mean snow depth in the study area was 0.54 m (1982-85) and the mean δ18O value of the snow-pack was -31.3˚/00. Isotope data were not obtained previously for this geographic region and, therefore, complement a previous study of δ18O variations in High Arctic snow (Koerner, 1979). The data are consistent with an Arctic Ocean moisture source. The δ18O profiles show seasonal variations, with winter snow being more depleted in18O than fall and spring snow. However, the δ18O profiles are dominated by a trend to higher δ18O values with increasing depth. This is attributed to a decrease in δ18O values as condensation temperatures fall during the autumn-winter accumulation period. During this time, there is also a change from relatively open to almost complete ice cover in the Arctic Ocean. The change in evaporation conditions and consequent effect on δ values gives rise to a sharp discontinuity in the δ18O profiles and a bi-modal δ18O frequency distribution. The bi-modal distribution is reinforced by a secondary isotope fractionation that occurs during depth-hoar formation. This isotope effect leads to a wider δ18O range but does not significantly alter the mean δ18O value.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Francisco Ramírez ◽  
Arnaud Tarroux ◽  
Johanna Hovinen ◽  
Joan Navarro ◽  
Isabel Afán ◽  
...  

Abstract Spring sea ice phenology regulates the timing of the two consecutive pulses of marine autotrophs that form the base of the Arctic marine food webs. This timing has been suggested to be the single most essential driver of secondary production and the efficiency with which biomass and energy are transferred to higher trophic levels. We investigated the chronological sequence of productivity pulses and its potential cascading impacts on the reproductive performance of the High Arctic seabird community from Svalbard, Norway. We provide evidence that interannual changes in the seasonal patterns of marine productivity may impact the breeding performance of little auks and Brünnich’s guillemots. These results may be of particular interest given that current global warming trends in the Barents Sea region predict one of the highest rates of sea ice loss within the circumpolar Arctic. However, local- to regional-scale heterogeneity in sea ice melting phenology may add uncertainty to predictions of climate-driven environmental impacts on seabirds. Indeed, our fine-scale analysis reveals that the inshore Brünnich’s guillemots are facing a slower advancement in the timing of ice melt compared to the offshore-foraging little auks. We provide a suitable framework for analyzing the effects of climate-driven sea ice disappearance on seabird fitness.


Sign in / Sign up

Export Citation Format

Share Document