cauchy’s integral theorem
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 3)

H-INDEX

3
(FIVE YEARS 0)

2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Sadra Jazayeri ◽  
Enrico Pajer ◽  
David Stefanyszyn

Abstract In the standard approach to deriving inflationary predictions, we evolve a vacuum state in time according to the rules of a given model. Since the only observables are the future values of correlators and not their time evolution, this brings about a large degeneracy: a vast number of different models are mapped to the same minute number of observables. Furthermore, due to the lack of time-translation invariance, even tree-level calculations require an increasing number of nested integrals that quickly become intractable. Here we ask how much of the final observables can be “bootstrapped” directly from locality, unitarity and symmetries.To this end, we introduce two new “boostless” bootstrap tools to efficiently compute tree-level cosmological correlators/wavefunctions without any assumption about de Sitter boosts. The first is a Manifestly Local Test (MLT) that any n-point (wave)function of massless scalars or gravitons must satisfy if it is to arise from a manifestly local theory. When combined with a sub-set of the recently proposed Bootstrap Rules, this allows us to compute explicitly all bispectra to all orders in derivatives for a single scalar. Since we don’t invoke soft theorems, this can also be extended to multi-field inflation. The second is a partial energy recursion relation that allows us to compute exchange correlators. Combining a bespoke complex shift of the partial energies with Cauchy’s integral theorem and the Cosmological Optical Theorem, we fix exchange correlators up to a boundary term. The latter can be determined up to contact interactions using unitarity and manifest locality. As an illustration, we use these tools to bootstrap scalar inflationary trispectra due to graviton exchange and inflaton self-interactions.


Author(s):  
Wenzhang Huang ◽  
Chufen Wu

We propose and investigate a stage-structured SLIRM epidemic model with latent period in a spatially continuous habitat. We first show the existence of semi-travelling waves that connect the unstable disease-free equilibrium as the wave coordinate goes to − ∞, provided that the basic reproduction number $\mathcal {R}_0 > 1$ and $c > c_*$ for some positive number $c_*$ . We then use a combination of asymptotic estimates, Laplace transform and Cauchy's integral theorem to show the persistence of semi-travelling waves. Based on the persistent property, we construct a Lyapunov functional to prove the convergence of the semi-travelling wave to an endemic (positive) equilibrium as the wave coordinate goes to + ∞. In addition, by the Laplace transform technique, the non-existence of bounded semi-travelling wave is also proved when $\mathcal {R}_0 > 1$ and $0 < c < c_*$ . This indicates that $c_*$ is indeed the minimum wave speed. Finally simulations are given to illustrate the evolution of profiles.


2019 ◽  
Vol 1 ◽  
pp. 259-264
Author(s):  
M Egahi ◽  
I O Ogwuche ◽  
J Ode

Cauchy's integral theorem and formula which holds for analytic functions is proved in most standard complex analysis texts. The nth derivative form is also proved. Here we derive the nth derivative form of Cauchy's integral formula using division method and showed its link with Taylor's theorem and demonstrate the result with some polynomials.


2015 ◽  
Vol 2015 ◽  
pp. 1-4 ◽  
Author(s):  
Rogelio Luck ◽  
Gregory J. Zdaniuk ◽  
Heejin Cho

This paper presents a method for obtaining a solution for all the roots of a transcendental equation within a bounded region by finding a polynomial equation with the same roots as the transcendental equation. The proposed method is developed using Cauchy’s integral theorem for complex variables and transforms the problem of finding the roots of a transcendental equation into an equivalent problem of finding roots of a polynomial equation with exactly the same roots. The interesting result is that the coefficients of the polynomial form a vector which lies in the null space of a Hankel matrix made up of the Fourier series coefficients of the inverse of the original transcendental equation. Then the explicit solution can be readily obtained using the complex fast Fourier transform. To conclude, the authors present an example by solving for the first three eigenvalues of the 1D transient heat conduction problem.


2009 ◽  
Vol 19 (4) ◽  
pp. 339-354
Author(s):  
Mateus Mosca Viana ◽  
Riverson Rios ◽  
Rossana Maria de Castro Andrade ◽  
José Neuman de Souza

2008 ◽  
Vol 23 (36) ◽  
pp. 3057-3076 ◽  
Author(s):  
SEJII SAKODA

We solve time-sliced path integrals of one-dimensional Coulomb system in an exact manner. In formulating path integrals, we make use of the Duru–Kleinert transformation with Fujikawa's gauge theoretical technique. Feynman kernels in the momentum representation both for bound states and scattering states will be obtained with clear pole structure that explains the exactness of the path integral. The path integrals presented here can be, therefore, evaluated exactly by making use of Cauchy's integral theorem.


Sign in / Sign up

Export Citation Format

Share Document