free fermi
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 5)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Abdelghani Errehymy ◽  
G. Mustafa ◽  
Youssef Khedif ◽  
Mohammed Daoud

Abstract The main aim of this manuscript is to explore the existence and salient features of spherically symmetric relativistic quark stars in the background of massive Brans-Dicke gravity. The exact solutions to the modified Einstein field equations are derived for specific forms of coupling and scalar field functions by using the equation of state relating to the strange quark matter that stimulates the phenomenological MIT-Bag model as a free Fermi gas of quarks. We use a well-behaved function along with Karmarkar condition for class-one embedding as well as junction conditions to determine the unknown metric tensors. The radii of the strange compact stars viz., PSR J1416-2230, PSR J1903+327, 4U 1820-30, CenX-3, EXO1785-248 are predicted via their observed mass for different values of the massive Brans-Dicke parameters. We explore the influences of mass of scalar field $m_{\phi}$ as well as coupling parameter $\omega_{BD}$ along with bag constant $\mathcal{B}$ on state determinants and perform several tests on the viability and stability of the constructed stellar model. Conclusively, we find that our stellar system is physically viable and stable as it satisfies all the energy conditions as well as necessary stability criteria under the influence of a gravitational scalar field.


2021 ◽  
Vol 2021 (11) ◽  
pp. 056
Author(s):  
Filippo Anzuini ◽  
Nicole F. Bell ◽  
Giorgio Busoni ◽  
Theo F. Motta ◽  
Sandra Robles ◽  
...  

Abstract We consider the capture of dark matter (DM) in neutron stars via scattering on hadronic targets, including neutrons, protons and hyperons. We extend previous analyses by including momentum dependent form factors, which account for hadronic structure, and incorporating the effect of baryon strong interactions in the dense neutron star interior, rather than modelling the baryons as a free Fermi gas. The combination of these effects suppresses the DM capture rate over a wide mass range, thus increasing the cross section for which the capture rate saturates the geometric limit. In addition, variation in the capture rate associated with the choice of neutron star equation of state is reduced. For proton targets, the use of the interacting baryon approach to obtain the correct Fermi energy is essential for an accurate evaluation of the capture rate in the Pauli-blocked regime. For heavy neutron stars, which are expected to contain exotic matter, we identify cases where DM scattering on hyperons contributes significantly to the total capture rate. Despite smaller neutron star capture rates, compared to existing analyses, we find that the projected DM-nucleon scattering sensitivity greatly exceeds that of nuclear recoil experiments for a wide DM mass range.


2021 ◽  
pp. 136684
Author(s):  
Luis C.N. Santos ◽  
Clésio E. Mota ◽  
Franciele M. da Silva ◽  
Guilherme Grams ◽  
I.P. Lobo

2020 ◽  
Vol 21 (11) ◽  
pp. 3639-3658
Author(s):  
Peter Müller ◽  
Ruth Schulte

Abstract We consider a multi-dimensional continuum Schrödinger operator which is given by a perturbation of the negative Laplacian by a compactly supported potential. We establish both an upper bound and a lower bound on the bipartite entanglement entropy of the ground state of the corresponding quasi-free Fermi gas. The bounds prove that the scaling behaviour of the entanglement entropy remains a logarithmically enhanced area law as in the unperturbed case of the free Fermi gas. The central idea for the upper bound is to use a limiting absorption principle for such kinds of Schrödinger operators.


2019 ◽  
Vol 60 (4) ◽  
pp. 042201 ◽  
Author(s):  
M. B. Hastings
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document