ferric oxyhydroxide
Recently Published Documents


TOTAL DOCUMENTS

87
(FIVE YEARS 13)

H-INDEX

23
(FIVE YEARS 2)

2022 ◽  
Vol 189 (2) ◽  
Author(s):  
Dong Yang ◽  
Lei Lei ◽  
Kaidi Yang ◽  
Keyi Gao ◽  
Tongtong Jia ◽  
...  

2022 ◽  
Vol 29 (1) ◽  
Author(s):  
Cyril Zurita ◽  
Satoru Tsushima ◽  
Pier Lorenzo Solari ◽  
Aurélie Jeanson ◽  
Gaëlle Creff ◽  
...  

Ferritin is the main protein of Fe storage in eukaryote and prokaryote cells. It is a large multifunctional, multi-subunit protein consisting of heavy H and light L subunits. In the field of nuclear toxicology, it has been suggested that some actinide elements, such as thorium and plutonium at oxidation state +IV, have a comparable `biochemistry' to iron at oxidation state +III owing to their very high tendency for hydrolysis and somewhat comparable ionic radii. Therefore, the possible mechanisms of interaction of such actinide elements with the Fe storage protein is a fundamental question of bio-actinidic chemistry. We recently described the complexation of Pu(IV) and Th(IV) with horse spleen ferritin (composed mainly of L subunits). In this article, we bring another viewpoint to this question by further combining modeling with our previous EXAFS data for Pu(IV) and Th(IV). As a result, the interaction between the L subunits and both actinides appears to be non-specific but driven only by the density of the presence of Asp and Glu residues on the protein shell. The formation of an oxyhydroxide Th or Pu core has not been observed under the experimental conditions here, nor the interaction of Th or Pu with the ferric oxyhydroxide core.


Author(s):  
Bilquis Ali Al-Qodami ◽  
Hafsa H. Alalawy ◽  
Islam M. Al-Akraa ◽  
Sayed Youssef Sayed ◽  
Nageh K. Allam ◽  
...  

2021 ◽  
Vol 48 (17) ◽  
Author(s):  
Bo Gan ◽  
Youjun Zhang ◽  
Yuqian Huang ◽  
Xiaohong Li ◽  
Qiming Wang ◽  
...  
Keyword(s):  

Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 244
Author(s):  
Carolina N. Keim ◽  
Jilder D. P. Serna ◽  
Daniel Acosta-Avalos ◽  
Reiner Neumann ◽  
Alex S. Silva ◽  
...  

On 5 November 2015, a large tailing deposit failed in Brazil, releasing an estimated 32.6 to 62 million m3 of iron mining tailings into the environment. Tailings from the Fundão Dam flowed down through the Gualaxo do Norte and Carmo riverbeds and floodplains and reached the Doce River. Since then, bottom sediments have become enriched in Fe(III) oxyhydroxides. Dissimilatory iron-reducing microorganisms (DIRMs) are anaerobes able to couple organic matter oxidation to Fe(III) reduction, producing CO2 and Fe(II), which can precipitate as magnetite (FeO·Fe2O3) and other Fe(II) minerals. In this work, we investigated the presence of DIRMs in affected and non-affected bottom sediments of the Gualaxo do Norte and Doce Rivers. The increase in Fe(II) concentrations in culture media over time indicated the presence of Fe(III)-reducing microorganisms in all sediments tested, which could reduce Fe(III) from both tailings and amorphous ferric oxyhydroxide. Half of our enrichment cultures converted amorphous Fe(III) oxyhydroxide into magnetite, which was characterized by X-ray diffraction, transmission electron microscopy, and magnetic measurements. The conversion of solid Fe(III) phases to soluble Fe(II) and/or magnetite is characteristic of DIRM cultures. The presence of DIRMs in the sediments of the Doce River and tributaries points to the possibility of reductive dissolution of goethite (α-FeOOH) and/or hematite (α-Fe2O3) from sediments, along with the consumption of organics, release of trace elements, and impairment of water quality.


2020 ◽  
Vol 531 ◽  
pp. 147363
Author(s):  
Jong Bae Park ◽  
Sei-Jin Lee ◽  
Rhushikesh Godbole ◽  
Young-Woo Lee ◽  
Jong-Seong Bae ◽  
...  

2020 ◽  
Vol 8 (11) ◽  
pp. 1668
Author(s):  
Eva Duborská ◽  
Kinga Szabó ◽  
Marek Bujdoš ◽  
Hana Vojtková ◽  
Pavol Littera ◽  
...  

In this work, the viability of bioaccumulation and bioextraction processes for arsenic removal from contaminated waters, as well as the recycling of arsenate-treated amorphous ferric oxyhydroxide adsorbent (FeOOH) were evaluated using the common soil microscopic filamentous fungus Aspergillus niger. After treating the contaminated arsenate solution (100 mg As L−1) with FeOOH, the remaining solution was exposed to the growing fungus during a static 19-day cultivation period to further decrease the arsenic concentration. Our data indicated that although the FeOOH adsorbent is suitable for arsenate removal with up to 84% removal efficiency, the fungus was capable of accumulating only up to 13.2% of the remaining arsenic from the culture media. This shows that the fungus A. niger, although highly praised for its application in environmental biotechnology research, was insufficient for decreasing the arsenic contamination to an environmentally acceptable level. However, the bioextraction of arsenic from arsenate-treated FeOOH proved relatively effective for reuse of the adsorbent. Due to its production of acidic metabolites, which decreased pH below 2.7, the fungal strain was capable of removing of up to 98.2% of arsenic from the arsenate-treated FeOOH adsorbent.


Sign in / Sign up

Export Citation Format

Share Document