intrinsic hand muscle
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 4)

H-INDEX

8
(FIVE YEARS 0)

2020 ◽  
Vol 123 (2) ◽  
pp. 630-644
Author(s):  
Katie Y. W. Khong ◽  
Ferran Galán ◽  
Demetris S. Soteropoulos

Mechanical perturbations in one upper limb often elicit corrective responses in both the perturbed as well as its contralateral and unperturbed counterpart. These crossed corrective responses have been shown to be sensitive to the bimanual requirements of the perturbation, but crossed responses (CRs) in hand muscles are far less well studied. Here, we investigate corrective CRs in an intrinsic hand muscle, the first dorsal interosseous (1DI), to clockwise and anticlockwise mechanical perturbations to the contralateral index finger while participants performed a bimanual finger abduction task. We found that the CRs in the unperturbed 1DI were sensitive to the direction of the perturbation of the contralateral index finger. However, the size of the CRs was not sensitive to the amplitude of the contralateral perturbation nor its context within the bimanual task. The onset latency of the CRs was too fast to be purely transcortical (<70 ms) in 12/12 participants. This confirms that during isolated bimanual finger movements, sensory feedback from one hand can influence the other, but the pathways mediating the earliest components of this interaction are likely to involve subcortical systems such as the brainstem or spinal cord, which may afford less flexibility to the task demands. NEW & NOTEWORTHY An intrinsic hand muscle shows a crossed response to a perturbation of the contralateral index finger. The crossed response is dependent on the direction of the contralateral perturbation but not on the amplitude or the bimanual requirements of the movement, suggesting a far less flexible control policy than those governing crossed responses in more proximal muscles. The crossed response is too fast to be purely mediated by transcortical pathways, suggesting subcortical contributions.


2018 ◽  
Vol 63 (6) ◽  
pp. 635-645 ◽  
Author(s):  
Victor Hugo Souza ◽  
Taian Martins Vieira ◽  
André Salles Cunha Peres ◽  
Marco Antonio Cavalcanti Garcia ◽  
Claudia Domingues Vargas ◽  
...  

Abstract Previous reports on the relationship between coil orientation and amplitude of motor evoked potential (MEP) in transcranial magnetic stimulation (TMS) did not consider the effect of electrode arrangement. Here we explore this open issue by investigating whether TMS coil orientation affects the amplitude distribution of MEPs recorded from the abductor pollicis brevis (APB) muscle with a bi-dimensional grid of 61 electrodes. Moreover, we test whether conventional mono- and bipolar montages provide representative MEPs compared to those from the grid of electrodes. Our results show that MEPs with the greatest amplitudes were elicited for 45° and 90° coil orientations, i.e. perpendicular to the central sulcus, for all electrode montages. Stimulation with the coil oriented at 135° and 315°, i.e. parallel to the central sulcus, elicited the smallest MEP amplitudes. Additionally, changes in coil orientation did not affect the spatial distribution of MEPs over the muscle extent. It has been shown that conventional electrodes with detection volume encompassing the APB belly may detect representative MEPs for optimal coil orientations. In turn, non-optimal orientations were identified only with the grid of electrodes. High-density electromyography may therefore provide new insights into the effect of coil orientation on MEPs from the APB muscle.


2017 ◽  
Vol 42 (1) ◽  
pp. 103-113 ◽  
Author(s):  
Jagannathan Madhanagopal ◽  
Om Prakash Singh ◽  
Vikram Mohan ◽  
Kathiresan V. Sathasivam ◽  
Abdul Hafidz Omar ◽  
...  

An accurate measurement of intrinsic hand muscle strength (IHMS) is required by clinicians for effective clinical decision-making, diagnosis of certain diseases, and evaluation of the outcome of treatment. In practice, the clinicians use Intrins-o-meter and Rotterdam Intrinsic Hand Myometer for IHMS measurement. These are quite bulky, expensive, and possess poor interobserver reliability (37–52%) and sensitivity. The purpose of this study was to develop an alternative lightweight, accurate, cost-effective force measurement device with a simple electronic circuit and test its suitability for IHMS measurement. The device was constructed with ketjenblack/deproteinized natural rubber sensor, 1-MΩ potential divider, and Arduino Uno through the custom-written software. Then, the device was calibrated and tested for accuracy and repeatability within the force range of finger muscles (100 N). The 95% limit of agreement in accuracy from −1.95 N to 2.06 N for 10 to 100 N applied load and repeatability coefficient of ±1.91 N or 6.2% was achieved. Furthermore, the expenditure for the device construction was around US$ 53. For a practical demonstration, the device was tested among 16 participants for isometric strength measurement of the ulnar abductor and dorsal interossei. The results revealed that the performance of the device was suitable for IHMS measurement.


Author(s):  
Ravinder-Jeet Singh ◽  
Veeramani Preethish-Kumar ◽  
Kiran Polavarapu ◽  
Seena Vengalil ◽  
Chandrajit Prasad ◽  
...  

2016 ◽  
Vol 115 (4) ◽  
pp. 2191-2198 ◽  
Author(s):  
Marc R. Kamke ◽  
Abbey S. Nydam ◽  
Martin V. Sale ◽  
Jason B. Mattingley

Paired associative stimulation (PAS) induces changes in the excitability of human sensorimotor cortex that outlast the procedure. PAS typically involves repeatedly pairing stimulation of a peripheral nerve that innervates an intrinsic hand muscle with transcranial magnetic stimulation over the representation of that muscle in the primary motor cortex. Depending on the timing of the stimuli (interstimulus interval of 25 or 10 ms), PAS leads to either an increase (PAS25) or a decrease (PAS10) in excitability. Both protocols, however, have been associated with an increase in excitability of nearby muscle representations not specifically targeted by PAS. Based on these spillover effects, we hypothesized that an additive, excitability-enhancing effect of PAS25 applied to one muscle representation may be produced by simultaneously applying PAS25 or PAS10 to a nearby representation. In different experiments prototypical PAS25 targeting the left thumb representation [abductor pollicis brevis (APB)] was combined with either PAS25 or PAS10 applied to the left little finger representation [abductor digiti minimi (ADM)] or, in a control experiment, with PAS10 also targeting the APB. In an additional control experiment PAS10 targeted both representations. The plasticity effects were quantified by measuring the amplitude of motor evoked potentials (MEPs) recorded before and after PAS. As expected, prototypical PAS25 was associated with an increase in MEP amplitude in the APB muscle. This effect was enhanced when PAS also targeted the ADM representation but only when a different interstimulus timing (PAS10) was used. These results suggest that PAS-induced plasticity is modified by concurrently targeting separate motor cortical representations with excitatory and inhibitory protocols.


2016 ◽  
Vol 41 (4) ◽  
pp. 392-399 ◽  
Author(s):  
A. Al-Sukaini ◽  
H. P. Singh ◽  
J. J. Dias

This study aims to identify the patterns of dominance of extrinsic or intrinsic muscles in finger flexion during initiation of finger curl and mid-finger flexion. We recorded 82 hands of healthy individuals (18–74 years) while flexing their fingers and tracked the finger joint angles of the little finger using video motion tracking. A total of 57 hands (69.5%) were classified as extrinsic dominant, where the finger flexion was initiated and maintained at proximal interphalangeal and distal interphalangeal joints. A total of 25 (30.5%) were classified as intrinsic dominant, where the finger flexion was initiated and maintained at the metacarpophalangeal joint. The distribution of age, sex, dominance, handedness and body mass index was similar in the two groups. This knowledge may allow clinicians to develop more efficient rehabilitation regimes, since intrinsic dominant individuals would not initiate extrinsic muscle contraction till later in finger flexion, and might therefore be allowed limited early active motion. For extrinsic dominant individuals, by contrast, initial contraction of extrinsic muscles would place increased stress on the tendon repair site if early motion were permitted.


Sign in / Sign up

Export Citation Format

Share Document