scholarly journals X-ray crystallographic fragment screening against the human prion protein

Author(s):  
Victor Lopes Rangel
RSC Advances ◽  
2021 ◽  
Vol 11 (42) ◽  
pp. 25901-25911
Author(s):  
Preeti Rana Sirohi ◽  
Anchala Kumari ◽  
Nikita Admane ◽  
Pallavi Somvanshi ◽  
Abhinav Grover

Polydatin is found to be a pharmacologically-significant scaffold that can bind to the rPrPres repertoire and inhibit its conversion to the highly infectious and neurotoxic PrPSc-like form, thus acting like a promising anti-prion drug lead.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maxime Bélondrade ◽  
Simon Nicot ◽  
Charly Mayran ◽  
Lilian Bruyere-Ostells ◽  
Florian Almela ◽  
...  

AbstractUnlike variant Creutzfeldt–Jakob disease prions, sporadic Creutzfeldt–Jakob disease prions have been shown to be difficult to amplify in vitro by protein misfolding cyclic amplification (PMCA). We assessed PMCA of pathological prion protein (PrPTSE) from 14 human sCJD brain samples in 3 substrates: 2 from transgenic mice expressing human prion protein (PrP) with either methionine (M) or valine (V) at position 129, and 1 from bank voles. Brain extracts representing the 5 major clinicopathological sCJD subtypes (MM1/MV1, MM2, MV2, VV1, and VV2) all triggered seeded PrPTSE amplification during serial PMCA with strong seed- and substrate-dependence. Remarkably, bank vole PrP substrate allowed the propagation of all sCJD subtypes with preservation of the initial molecular PrPTSE type. In contrast, PMCA in human PrP substrates was accompanied by a PrPTSE molecular shift during heterologous (M/V129) PMCA reactions, with increased permissiveness of V129 PrP substrate to in vitro sCJD prion amplification compared to M129 PrP substrate. Combining PMCA amplification sensitivities with PrPTSE electrophoretic profiles obtained in the different substrates confirmed the classification of 4 distinct major sCJD prion strains (M1, M2, V1, and V2). Finally, the level of sensitivity required to detect VV2 sCJD prions in cerebrospinal fluid was achieved.


2021 ◽  
Vol 15 (1) ◽  
pp. 193-196
Author(s):  
Máximo Sanz-Hernández ◽  
Alfonso De Simone

AbstractTransmissible spongiform encephalopathies (TSEs) are fatal neurodegenerative disorders associated with the misfolding and aggregation of the human prion protein (huPrP). Despite efforts into investigating the process of huPrP aggregation, the mechanisms triggering its misfolding remain elusive. A number of TSE-associated mutations of huPrP have been identified, but their role at the onset and progression of prion diseases is unclear. Here we report the NMR assignments of the C-terminal globular domain of the wild type huPrP and the pathological mutant T183A. The differences in chemical shifts between the two variants reveal conformational alterations in some structural elements of the mutant, whereas the analyses of secondary shifts and random coil index provide indications on the putative mechanisms of misfolding of T183A huPrP.


2013 ◽  
Vol 94 (12) ◽  
pp. 2819-2827 ◽  
Author(s):  
Rona Wilson ◽  
Karen Dobie ◽  
Nora Hunter ◽  
Cristina Casalone ◽  
Thierry Baron ◽  
...  

The transmission of bovine spongiform encephalopathy (BSE) to humans, leading to variant Creutzfeldt–Jakob disease has demonstrated that cattle transmissible spongiform encephalopathies (TSEs) can pose a risk to human health. Until recently, TSE disease in cattle was thought to be caused by a single agent strain, BSE, also known as classical BSE, or BSE-C. However, due to the initiation of a large-scale surveillance programme throughout Europe, two atypical BSE strains, bovine amyloidotic spongiform encephalopathy (BASE, also named BSE-L) and BSE-H have since been discovered. To model the risk to human health, we previously inoculated these two forms of atypical BSE (BASE and BSE-H) into gene-targeted transgenic (Tg) mice expressing the human prion protein (PrP) (HuTg) but were unable to detect any signs of TSE pathology in these mice. However, despite the absence of TSE pathology, upon subpassage of some BASE-challenged HuTg mice, a TSE was observed in recipient gene-targeted bovine PrP Tg (Bov6) mice but not in HuTg mice. Disease transmission from apparently healthy individuals indicates the presence of subclinical BASE infection in mice expressing human PrP that cannot be identified by current diagnostic methods. However, due to the lack of transmission to HuTg mice on subpassage, the efficiency of mouse-to-mouse transmission of BASE appears to be low when mice express human rather than bovine PrP.


2009 ◽  
Vol 46 (6) ◽  
pp. 1076-1083 ◽  
Author(s):  
Vincent Hanoux ◽  
Anne Wijkhuisen ◽  
Coralie Alexandrenne ◽  
Christophe Créminon ◽  
Didier Boquet ◽  
...  

2006 ◽  
Vol 128 (35) ◽  
pp. 11673-11678 ◽  
Author(s):  
Adrian C. Apetri ◽  
Kosuke Maki ◽  
Heinrich Roder ◽  
Witold K. Surewicz

Sign in / Sign up

Export Citation Format

Share Document