craton destruction
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 9)

H-INDEX

12
(FIVE YEARS 3)

2021 ◽  
Vol 9 ◽  
Author(s):  
Yibo Wang ◽  
Yang Bai ◽  
Lijuan Wang ◽  
Junpeng Guan ◽  
Yaqi Wang ◽  
...  

Geothermal resources, as an important member of clean renewable energy, of which the exploration, development, and utilization of geothermal resources, especially deep geothermal resources, are of great significance for achieving carbon peaking and carbon neutrality. Taking the North Jiangsu Basin (NJB) as an example, this paper reviews the exploration process of deep geothermal resources in the basin and presents the latest results. The study shows that the NJB is a typical “hot basin” with an average heat flow value of 68 mW/m2. In this region, the deep geothermal resource favorable areas in the NJB are mainly distributed in the depressions, in particular those near the Jianhu uplift, i.e., the Yanfu depression and the Dongtai depression. In addition, the genesis mechanism of the deep geothermal resource favorable area in the NJB is best explained by the “two stages, two sources” thermal concentration, that is, “two stages” means that the transformation of the lithospheric thermal regime are caused by the late Mesozoic craton destruction in East China, and the Cenozoic lithospheric extension; these two tectono-thermal events together lead to the deep anomalous mantle-source heat (the first source), and the upper crustal-scale heat control is mainly caused by thermal refraction (the second source). Overall, this case study underlines new ideas of understanding the geothermal genesis mechanism in East China, which can guide for the exploration and development of deep geothermal resources at the basin scale.


2021 ◽  
Vol 118 (34) ◽  
pp. e2107859118
Author(s):  
Zhonghe Zhou ◽  
Qingren Meng ◽  
Rixiang Zhu ◽  
Min Wang

The Early Cretaceous Jehol Biota is a terrestrial lagerstätte that contains exceptionally well-preserved fossils indicating the origin and early evolution of Mesozoic life, such as birds, dinosaurs, pterosaurs, mammals, insects, and flowering plants. New geochronologic studies have further constrained the ages of the fossil-bearing beds, and recent investigations on Early Cretaceous tectonic settings have provided much new information for understanding the spatiotemporal distribution of the biota and dispersal pattern of its members. Notably, the occurrence of the Jehol Biota coincides with the initial and peak stages of the North China craton destruction in the Early Cretaceous, and thus the biotic evolution is related to the North China craton destruction. However, it remains largely unknown how the tectonic activities impacted the development of the Jehol Biota in northeast China and other contemporaneous biotas in neighboring areas in East and Central Asia. It is proposed that the Early Cretaceous rift basins migrated eastward in the northern margin of the North China craton and the Great Xing’an Range, and the migration is regarded to have resulted from eastward retreat of the subducting paleo-Pacific plate. The diachronous development of the rift basins led to the lateral variations of stratigraphic sequences and depositional environments, which in turn influenced the spatiotemporal evolution of the Jehol Biota. This study represents an effort to explore the linkage between terrestrial biota evolution and regional tectonics and how plate tectonics constrained the evolution of a terrestrial biota through various surface geological processes.


2020 ◽  
Vol 80 ◽  
pp. 228-243
Author(s):  
Xiaoxia Wang ◽  
Yilin Xiao ◽  
He Sun ◽  
Yangyang Wang ◽  
Jingao Liu ◽  
...  

Geology ◽  
2019 ◽  
Vol 48 (2) ◽  
pp. 169-173 ◽  
Author(s):  
Zaicong Wang ◽  
Huai Cheng ◽  
Keqing Zong ◽  
Xianlei Geng ◽  
Yongsheng Liu ◽  
...  

Abstract The origin of giant lode gold deposits of Mesozoic age in the North China craton (NCC) is enigmatic because high-grade metamorphic ancient crust would be highly depleted in gold. Instead, lithospheric mantle beneath the crust is the likely source of the gold, which may have been anomalously enriched by metasomatic processes. However, the role of gold enrichment and metasomatism in the lithospheric mantle remains unclear. Here, we present comprehensive data on gold and platinum group element contents of mantle xenoliths (n = 28) and basalts (n = 47) representing the temporal evolution of the eastern NCC. The results indicate that extensive mantle metasomatism and hydration introduced some gold (<1–2 ppb) but did not lead to a gold-enriched mantle. However, volatile-rich basalts formed mainly from the metasomatized lithospheric mantle display noticeably elevated gold contents as compared to those from the asthenosphere. Combined with the significant inheritance of mantle-derived volatiles in auriferous fluids of ore bodies, the new data reveal that the mechanism for the formation of the lode gold deposits was related to the volatile-rich components that accumulated during metasomatism and facilitated the release of gold during extensional craton destruction and mantle melting. Gold-bearing, hydrous magmas ascended rapidly along translithospheric fault zones and evolved auriferous fluids to form the giant deposits in the crust.


2019 ◽  
Vol 47 (1) ◽  
pp. 173-195 ◽  
Author(s):  
Fu-Yuan Wu ◽  
Jin-Hui Yang ◽  
Yi-Gang Xu ◽  
Simon A. Wilde ◽  
Richard J. Walker

The North China Craton (NCC) was originally formed by the amalgamation of the eastern and western blocks along an orogenic belt at ∼1.9 Ga. After cratonization, the NCC was essentially stable until the Mesozoic, when intense felsic magmatism and related mineralization, deformation, pull-apart basins, and exhumation of the deep crust widely occurred, indicative of destruction or decratonization. Accompanying this destruction was significant removal of the cratonic keel and lithospheric transformation, whereby the thick (∼200 km) and refractory Archean lithosphere mantle was replaced by a thin (<80 km) juvenile one. The decratonization of the NCC was driven by flat slab subduction, followed by a rollback of the paleo-Pacific plate during the late Mesozoic. A global synthesis indicates that cratons are mainly destroyed by oceanic subduction, although mantle plumes might also trigger lithospheric thinning through thermal erosion. Widespread crust-derived felsic magmatism and large-scale ductile deformation can be regarded as petrological and structural indicators of craton destruction. ▪ A craton, a kind of ancient continental block on Earth, was formed mostly in the early Precambrian (>1.8 Ga). ▪ A craton is characterized by a rigid lithospheric root, which provides longevity and stability during its evolutionary history. ▪ Some cratons, such as the North China Craton, can be destroyed by losing their stability, manifested by magmatism, deformation, earthquake, etc.


2018 ◽  
Vol 123 (11) ◽  
pp. 10,040-10,068 ◽  
Author(s):  
Liang Liu ◽  
Jason P. Morgan ◽  
Yigang Xu ◽  
Martin Menzies
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document