flat slab subduction
Recently Published Documents


TOTAL DOCUMENTS

100
(FIVE YEARS 42)

H-INDEX

20
(FIVE YEARS 4)

2022 ◽  
Vol 577 ◽  
pp. 117242
Author(s):  
T.S. Waldien ◽  
R.O. Lease ◽  
S.M. Roeske ◽  
J.A. Benowitz ◽  
P.B. O'Sullivan

Geosphere ◽  
2021 ◽  
Author(s):  
Xiaowen Liu ◽  
Claire A. Currie ◽  
Lara S. Wagner

Most flat-slab subduction regions are marked by an absence of arc volcanism, which is consistent with closure of the hot mantle wedge as the subducting plate flattens below the continent. Farther inland, low surface heat flow is observed, which is generally attributed to cooling of the continent by the underlying flat slab. However, modern flat slabs have only been in place for <20 Ma, and it is unclear whether there has been sufficient time for cooling to occur. We use numerical models to assess temporal variations in continental thermal structure during flat-slab subduction. Our models show that the flat slab leads to continental cooling on timescales of tens of millions of years. Cool slab temperatures must diffuse through the continental lithosphere, resulting in a delay between slab emplacement and surface cooling. Therefore, the timescales primarily depend on the flat-slab depth with shallower slabs resulting in shorter timescales. The magnitude of cooling increases for a shallow or long-lived flat slab, old subducting plate, and fast convergence rates. For regions with flat slabs at 45–70 km depth (e.g., Mexico and Peru), shallow continental cooling initiates 5–10 Ma after slab emplacement, and low surface heat flow in these regions is largely explained by the presence of the flat slab. However, for the Pampean region in Chile, with an ~100-km-deep slab, our models predict that conductive cooling has not yet affected the surface heat flow. The low heat flow observed requires additional processes such as advective cooling from the infiltration of fluids released through dehydration of the flat slab.


Geosphere ◽  
2021 ◽  
Author(s):  
Jeffrey M. Trop ◽  
Jeff A. Benowitz ◽  
Carl S. Kirby ◽  
Matthew E. Brueseke

The Wrangell Arc in Alaska (USA) and adjacent volcanic fields in the Yukon provide a long-term record of interrelations between flat-slab subduction of the Yakutat microplate, strike-slip translation along the Denali–Totschunda–Duke River fault system, and magmatism focused within and proximal to a Cretaceous suture zone. Detrital zircon (DZ) U-Pb (n = 2640) and volcanic lithic (DARL) 40Ar/39Ar dates (n = 2771) from 30 modern river sediment samples document the spatial-temporal evolution of Wrangell Arc magmatism, which includes construction of some of the largest Quaternary volcanoes on Earth. Mismatches in DZ and DARL date distributions highlight the impact of variables such as mineral fertility and downstream mixing/dilution on resulting provenance signatures. Geochronologic data document the initiation of Wrangell Arc magmatism at ca. 30–17 Ma along both sides of the Totschunda fault on the north flank of the Wrangell–St. Elias Mountains in Alaska, followed by southeastward progression of magmatism at ca. 17–10 Ma along the Duke River fault in the Yukon. This spatial-temporal evolution is attributable to dextral translation along intra-arc, strike-slip faults and a change in the geometry of the subducting slab (slab curling/steepening). Magmatism then progressed generally westward outboard of the Totschunda and Duke River faults at ca. 13–6 Ma along the southern flank of the Wrangell–St. Elias Mountains in Alaska and then northwestward from ca. 6 Ma to present in the western Wrangell Mountains. The 13 Ma to present spatial-temporal evolution is consistent with dextral translation along intra-arc, strike-slip faults and previously documented changes in plate boundary conditions, which include an increase in plate convergence rate and angle at ca. 6 Ma. Voluminous magmatism is attributed to shallow subduction-related flux melting and slab edge melting that is driven by asthenospheric upwelling along the lateral edge of the Yakutat flat slab. Magmatism was persistently focused within or adjacent to a remnant suture zone, which indicates that upper plate crustal heterogeneities influenced arc magmatism. Rivers sampled also yield subordinate Paleozoic–Mesozoic DZ and DARL age populations that reflect earlier episodes of magmatism within underlying accreted terranes and match magmatic flare-ups documented along the Cordilleran margin.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Vladimir V. Golozubov ◽  
Ludmila F. Simanenko

AbstractWe propose a scheme to subdivide the Samarka terrane, a Jurassic accretionary prism fragment, into tectonostratigraphic complexes. This subdivision provides a basis to study these formations and map them on a medium- to large-scale. Each complex corresponds to a certain stage in the accretionary prism formation. Thus, the complexes composed of subduction mélange and olistostromes (in our case, Ust-Zhuravlevka and Sebuchar complexes), can be correlated to episodes when the underthrusting of seamounts hampered subduction, as evidenced by seamount fragments contained in the complexes. Episodes of relatively quiet subduction have also been identified, resulting in complexes composed mainly of normally bedded terrigenous and biogenic formations (Tudovaka and Udeka and, partially, Ariadnoe complexes). Particularly considered is the Okrainka-Sergeevka allochthonous complex – a fragment of continental plate overhanging a subduction zone. It was included in the accretionary prism during gravitational sliding on the internal slope of the paleotrench. All volcanic rocks in the accretionary prism are allochthonous fragments of the accreted oceanic crust. The absence of the Jurassic-Berriasian volcanic belt related to this prism, as well as synchronous autochthonous volcanism, indicates that the Samarka terrane accretionary prism formed under conditions of flat-slab subduction, similar to modern examples along the Andean margin.


Author(s):  
Sarah E. Petersen ◽  
T.D. Hoisch ◽  
R.C. Porter

2021 ◽  
pp. 103621
Author(s):  
Lijun Liu ◽  
Diandian Peng ◽  
Liang Liu ◽  
Ling Chen ◽  
Sanzhong Li ◽  
...  

2021 ◽  
Vol 57 ◽  
pp. 147-191
Author(s):  
David Gibson ◽  
Sandra M. Barr ◽  
Deanne Van Rooyen ◽  
Chris White ◽  
Jean-Luc Pilote

Devonian granitoid plutons comprise a major part of the bedrock of northwestern Maine representing the magmatic expression of the Acadian orogeny in this part of the northern Appalachian orogen. They are petrographically diverse with minerals characteristic of both I- and S-type granites, in some cases within the same intrusion, and some are compositionally zoned. New LA-ICP-MS ages presented here elucidate the timing and duration of this magmatism. The earliest phase of granitoid magmatism began around 410–405 Ma with the emplacement of the Flagstaff Lake Igneous Complex, and the presence of contemporaneous mafic rocks suggests that mantle-derived magmas were also produced at this time. Late Devonian ages, ca. 365 Ma, for many intrusions, such as the Chain of Ponds and Songo plutons, reveal that magmatism continued for 45 million years during which compositionally diverse I- and S-type magmas were produced. In addition, there is evidence that intrusive activity was prolonged within some plutons, for example the Rome-Norridgewock pluton and the Mooselookmeguntic Igneous Complex, with 10–15 myr between intrusive units. The new ages suggest a break in magmatism between 400 Ma and 390 Ma apparently separating Acadian magmatism into early and late pulses. The production of lower crustal I-type magmas appears to have been concentrated later, ca. 380–365 Ma, although several S-type granitoids were also emplaced during this period. These Late Devonian plutons display abundant zircon inheritance with ages around 385 Ma, which suggests that the crust was experiencing enhanced thermal perturbations during this extended timeframe. The new data for granitoid plutons in northwestern Maine are consistent with tectonic models for other parts of Ganderia which propose initial flat slab subduction followed by slab breakoff and delamination.


Sign in / Sign up

Export Citation Format

Share Document